Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Aug 15;100(4):921–930. doi: 10.1172/JCI119608

Do beta-chemokines have clinical relevance in HIV infection?

C E Mackewicz 1, E Barker 1, G Greco 1, G Reyes-Teran 1, J A Levy 1
PMCID: PMC508265  PMID: 9259592

Abstract

The role of beta-chemokines in HIV infection was evaluated. The kinetics of regulated upon activation of normal T cell expressed and secreted, macrophage inflammatory protein-1alpha, and macrophage inflammatory protein 1beta production by stimulated T lymphocytes did not differ substantially between HIV-infected (asymptomatic and with AIDS) and uninfected subjects. Maximal production of these beta-chemokines by activated peripheral blood cells was higher in the infected individuals than in uninfected individuals, but no significant difference was observed between healthy infected subjects and AIDS patients. Evaluation of the effect of HIV replication on beta-chemokine production indicated that acute infection of CD4+ T cells with non-syncytia-inducing (NSI) viruses generally increased beta-chemokine production two to eightfold, whereas with SI strains, it led to decreased production. The sensitivity of an individual's virus to beta-chemokine-mediated inhibition correlated with the NSI virus phenotype and a healthy clinical state. 50% of the AIDS patients, however, had NSI viruses that were sensitive to beta-chemokines. Finally, anti-beta-chemokine-neutralizing antibodies caused a more rapid release of HIV by CD4+ T cells naturally infected by NSI, but not SI, viruses indicating that endogenously produced chemokines can affect HIV production in culture. These findings suggest that beta-chemokines may affect HIV replication when an NSI virus is involved, but provide little evidence that they substantially influence HIV infection and pathogenesis.

Full Text

The Full Text of this article is available as a PDF (235.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alkhatib G., Combadiere C., Broder C. C., Feng Y., Kennedy P. E., Murphy P. M., Berger E. A. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996 Jun 28;272(5270):1955–1958. doi: 10.1126/science.272.5270.1955. [DOI] [PubMed] [Google Scholar]
  2. Atchison R. E., Gosling J., Monteclaro F. S., Franci C., Digilio L., Charo I. F., Goldsmith M. A. Multiple extracellular elements of CCR5 and HIV-1 entry: dissociation from response to chemokines. Science. 1996 Dec 13;274(5294):1924–1926. doi: 10.1126/science.274.5294.1924. [DOI] [PubMed] [Google Scholar]
  3. Berson J. F., Long D., Doranz B. J., Rucker J., Jirik F. R., Doms R. W. A seven-transmembrane domain receptor involved in fusion and entry of T-cell-tropic human immunodeficiency virus type 1 strains. J Virol. 1996 Sep;70(9):6288–6295. doi: 10.1128/jvi.70.9.6288-6295.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blazevic V., Heino M., Ranki A., Jussila T., Krohn K. J. RANTES, MIP and interleukin-16 in HIV infection. AIDS. 1996 Oct;10(12):1435–1436. doi: 10.1097/00002030-199610000-00021. [DOI] [PubMed] [Google Scholar]
  5. Bluman E. M., Bartynski K. J., Avalos B. R., Caligiuri M. A. Human natural killer cells produce abundant macrophage inflammatory protein-1 alpha in response to monocyte-derived cytokines. J Clin Invest. 1996 Jun 15;97(12):2722–2727. doi: 10.1172/JCI118726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown Z., Robson R. L., Westwick J. Regulation and expression of chemokines: potential role in glomerulonephritis. J Leukoc Biol. 1996 Jan;59(1):75–80. doi: 10.1002/jlb.59.1.75. [DOI] [PubMed] [Google Scholar]
  7. Choe H., Farzan M., Sun Y., Sullivan N., Rollins B., Ponath P. D., Wu L., Mackay C. R., LaRosa G., Newman W. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell. 1996 Jun 28;85(7):1135–1148. doi: 10.1016/s0092-8674(00)81313-6. [DOI] [PubMed] [Google Scholar]
  8. Clerici M., Balotta C., Trabattoni D., Papagno L., Ruzzante S., Rusconi S., Fusi M. L., Colombo M. C., Galli M. Chemokine production in HIV-seropositive long-term asymptomatic individuals. AIDS. 1996 Oct;10(12):1432–1433. doi: 10.1097/00002030-199610000-00019. [DOI] [PubMed] [Google Scholar]
  9. Cocchi F., DeVico A. L., Garzino-Demo A., Arya S. K., Gallo R. C., Lusso P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science. 1995 Dec 15;270(5243):1811–1815. doi: 10.1126/science.270.5243.1811. [DOI] [PubMed] [Google Scholar]
  10. Cocchi F., DeVico A. L., Garzino-Demo A., Cara A., Gallo R. C., Lusso P. The V3 domain of the HIV-1 gp120 envelope glycoprotein is critical for chemokine-mediated blockade of infection. Nat Med. 1996 Nov;2(11):1244–1247. doi: 10.1038/nm1196-1244. [DOI] [PubMed] [Google Scholar]
  11. Conlon K., Lloyd A., Chattopadhyay U., Lukacs N., Kunkel S., Schall T., Taub D., Morimoto C., Osborne J., Oppenheim J. CD8+ and CD45RA+ human peripheral blood lymphocytes are potent sources of macrophage inflammatory protein 1 alpha, interleukin-8 and RANTES. Eur J Immunol. 1995 Mar;25(3):751–756. doi: 10.1002/eji.1830250319. [DOI] [PubMed] [Google Scholar]
  12. Cook D. N., Beck M. A., Coffman T. M., Kirby S. L., Sheridan J. F., Pragnell I. B., Smithies O. Requirement of MIP-1 alpha for an inflammatory response to viral infection. Science. 1995 Sep 15;269(5230):1583–1585. doi: 10.1126/science.7667639. [DOI] [PubMed] [Google Scholar]
  13. Dean M., Carrington M., Winkler C., Huttley G. A., Smith M. W., Allikmets R., Goedert J. J., Buchbinder S. P., Vittinghoff E., Gomperts E. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science. 1996 Sep 27;273(5283):1856–1862. doi: 10.1126/science.273.5283.1856. [DOI] [PubMed] [Google Scholar]
  14. Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., Di Marzio P., Marmon S., Sutton R. E., Hill C. M. Identification of a major co-receptor for primary isolates of HIV-1. Nature. 1996 Jun 20;381(6584):661–666. doi: 10.1038/381661a0. [DOI] [PubMed] [Google Scholar]
  15. Dragic T., Litwin V., Allaway G. P., Martin S. R., Huang Y., Nagashima K. A., Cayanan C., Maddon P. J., Koup R. A., Moore J. P. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996 Jun 20;381(6584):667–673. doi: 10.1038/381667a0. [DOI] [PubMed] [Google Scholar]
  16. Evans L. A., McHugh T. M., Stites D. P., Levy J. A. Differential ability of human immunodeficiency virus isolates to productively infect human cells. J Immunol. 1987 May 15;138(10):3415–3418. [PubMed] [Google Scholar]
  17. Feng Y., Broder C. C., Kennedy P. E., Berger E. A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996 May 10;272(5263):872–877. doi: 10.1126/science.272.5263.872. [DOI] [PubMed] [Google Scholar]
  18. Goudsmit J. The role of viral diversity in HIV pathogenesis. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;10 (Suppl 1):S15–S19. [PubMed] [Google Scholar]
  19. Gruters R. A., Terpstra F. G., De Jong R., Van Noesel C. J., Van Lier R. A., Miedema F. Selective loss of T cell functions in different stages of HIV infection. Early loss of anti-CD3-induced T cell proliferation followed by decreased anti-CD3-induced cytotoxic T lymphocyte generation in AIDS-related complex and AIDS. Eur J Immunol. 1990 May;20(5):1039–1044. doi: 10.1002/eji.1830200514. [DOI] [PubMed] [Google Scholar]
  20. Hoffman A. D., Banapour B., Levy J. A. Characterization of the AIDS-associated retrovirus reverse transcriptase and optimal conditions for its detection in virions. Virology. 1985 Dec;147(2):326–335. doi: 10.1016/0042-6822(85)90135-7. [DOI] [PubMed] [Google Scholar]
  21. Hofmann B., Jakobsen K. D., Odum N., Dickmeiss E., Platz P., Ryder L. P., Pedersen C., Mathiesen L., Bygbjerg I. B., Faber V. HIV-induced immunodeficiency. Relatively preserved phytohemagglutinin as opposed to decreased pokeweed mitogen responses may be due to possibly preserved responses via CD2/phytohemagglutinin pathway. J Immunol. 1989 Mar 15;142(6):1874–1880. [PubMed] [Google Scholar]
  22. Jansson M., Popovic M., Karlsson A., Cocchi F., Rossi P., Albert J., Wigzell H. Sensitivity to inhibition by beta-chemokines correlates with biological phenotypes of primary HIV-1 isolates. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15382–15387. doi: 10.1073/pnas.93.26.15382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Keet I. P., Krol A., Klein M. R., Veugelers P., de Wit J., Roos M., Koot M., Goudsmit J., Miedema F., Coutinho R. A. Characteristics of long-term asymptomatic infection with human immunodeficiency virus type 1 in men with normal and low CD4+ cell counts. J Infect Dis. 1994 Jun;169(6):1236–1243. doi: 10.1093/infdis/169.6.1236. [DOI] [PubMed] [Google Scholar]
  24. Kinter A. L., Ostrowski M., Goletti D., Oliva A., Weissman D., Gantt K., Hardy E., Jackson R., Ehler L., Fauci A. S. HIV replication in CD4+ T cells of HIV-infected individuals is regulated by a balance between the viral suppressive effects of endogenous beta-chemokines and the viral inductive effects of other endogenous cytokines. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14076–14081. doi: 10.1073/pnas.93.24.14076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Koot M., Vos A. H., Keet R. P., de Goede R. E., Dercksen M. W., Terpstra F. G., Coutinho R. A., Miedema F., Tersmette M. HIV-1 biological phenotype in long-term infected individuals evaluated with an MT-2 cocultivation assay. AIDS. 1992 Jan;6(1):49–54. doi: 10.1097/00002030-199201000-00006. [DOI] [PubMed] [Google Scholar]
  26. Kunkel S. L., Lukacs N., Kasama T., Strieter R. M. The role of chemokines in inflammatory joint disease. J Leukoc Biol. 1996 Jan;59(1):6–12. doi: 10.1002/jlb.59.1.6. [DOI] [PubMed] [Google Scholar]
  27. Landay A., Ohlsson-Wilhelm B., Giorgi J. V. Application of flow cytometry to the study of HIV infection. AIDS. 1990 Jun;4(6):479–497. doi: 10.1097/00002030-199006000-00001. [DOI] [PubMed] [Google Scholar]
  28. Levy J. A., Cheng-Mayer C., Dina D., Luciw P. A. AIDS retrovirus (ARV-2) clone replicates in transfected human and animal fibroblasts. Science. 1986 May 23;232(4753):998–1001. doi: 10.1126/science.3010461. [DOI] [PubMed] [Google Scholar]
  29. Levy J. A., Tobler L. H., McHugh T. M., Casavant C. H., Stites D. P. Long-term cultivation of T-cell subsets from patients with acquired immune deficiency syndrome. Clin Immunol Immunopathol. 1985 Jun;35(3):328–336. doi: 10.1016/0090-1229(85)90093-5. [DOI] [PubMed] [Google Scholar]
  30. Liu R., Paxton W. A., Choe S., Ceradini D., Martin S. R., Horuk R., MacDonald M. E., Stuhlmann H., Koup R. A., Landau N. R. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996 Aug 9;86(3):367–377. doi: 10.1016/s0092-8674(00)80110-5. [DOI] [PubMed] [Google Scholar]
  31. Lukacs N. W., Strieter R. M., Chensue S. W., Kunkel S. L. Activation and regulation of chemokines in allergic airway inflammation. J Leukoc Biol. 1996 Jan;59(1):13–17. doi: 10.1002/jlb.59.1.13. [DOI] [PubMed] [Google Scholar]
  32. Mackewicz C. E., Barker E., Levy J. A. Role of beta-chemokines in suppressing HIV replication. Science. 1996 Nov 22;274(5291):1393–1395. doi: 10.1126/science.274.5291.1393. [DOI] [PubMed] [Google Scholar]
  33. Mackewicz C. E., Ortega H. W., Levy J. A. CD8+ cell anti-HIV activity correlates with the clinical state of the infected individual. J Clin Invest. 1991 Apr;87(4):1462–1466. doi: 10.1172/JCI115153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mackewicz C. E., Ortega H., Levy J. A. Effect of cytokines on HIV replication in CD4+ lymphocytes: lack of identity with the CD8+ cell antiviral factor. Cell Immunol. 1994 Feb;153(2):329–343. doi: 10.1006/cimm.1994.1032. [DOI] [PubMed] [Google Scholar]
  35. McDougal J. S., Cort S. P., Kennedy M. S., Cabridilla C. D., Feorino P. M., Francis D. P., Hicks D., Kalyanaraman V. S., Martin L. S. Immunoassay for the detection and quantitation of infectious human retrovirus, lymphadenopathy-associated virus (LAV). J Immunol Methods. 1985 Jan 21;76(1):171–183. doi: 10.1016/0022-1759(85)90489-2. [DOI] [PubMed] [Google Scholar]
  36. Oppenheim J. J., Zachariae C. O., Mukaida N., Matsushima K. Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu Rev Immunol. 1991;9:617–648. doi: 10.1146/annurev.iy.09.040191.003153. [DOI] [PubMed] [Google Scholar]
  37. Oravecz T., Pall M., Norcross M. A. Beta-chemokine inhibition of monocytotropic HIV-1 infection. Interference with a postbinding fusion step. J Immunol. 1996 Aug 15;157(4):1329–1332. [PubMed] [Google Scholar]
  38. Ransohoff R. M., Glabinski A., Tani M. Chemokines in immune-mediated inflammation of the central nervous system. Cytokine Growth Factor Rev. 1996 Jun;7(1):35–46. doi: 10.1016/1359-6101(96)00003-2. [DOI] [PubMed] [Google Scholar]
  39. Ridley D. J., Houk R. W., Reid M. J., Boswell R. N. Early lymphocyte transformation abnormalities in human immunodeficiency virus infection. J Clin Immunol. 1989 Mar;9(2):119–124. doi: 10.1007/BF00916939. [DOI] [PubMed] [Google Scholar]
  40. Rubbert A., Weissman D., Combadiere C., Pettrone K. A., Daucher J. A., Murphy P. M., Fauci A. S. Multifactorial nature of noncytolytic CD8+ T cell-mediated suppression of HIV replication: beta-chemokine-dependent and -independent effects. AIDS Res Hum Retroviruses. 1997 Jan 1;13(1):63–69. doi: 10.1089/aid.1997.13.63. [DOI] [PubMed] [Google Scholar]
  41. Samson M., Libert F., Doranz B. J., Rucker J., Liesnard C., Farber C. M., Saragosti S., Lapoumeroulie C., Cognaux J., Forceille C. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996 Aug 22;382(6593):722–725. doi: 10.1038/382722a0. [DOI] [PubMed] [Google Scholar]
  42. Sander B., Andersson J., Andersson U. Assessment of cytokines by immunofluorescence and the paraformaldehyde-saponin procedure. Immunol Rev. 1991 Feb;119:65–93. doi: 10.1111/j.1600-065x.1991.tb00578.x. [DOI] [PubMed] [Google Scholar]
  43. Schmidtmayerova H., Nottet H. S., Nuovo G., Raabe T., Flanagan C. R., Dubrovsky L., Gendelman H. E., Cerami A., Bukrinsky M., Sherry B. Human immunodeficiency virus type 1 infection alters chemokine beta peptide expression in human monocytes: implications for recruitment of leukocytes into brain and lymph nodes. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):700–704. doi: 10.1073/pnas.93.2.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Standiford T. J., Kunkel S. L., Greenberger M. J., Laichalk L. L., Strieter R. M. Expression and regulation of chemokines in bacterial pneumonia. J Leukoc Biol. 1996 Jan;59(1):24–28. doi: 10.1002/jlb.59.1.24. [DOI] [PubMed] [Google Scholar]
  45. Strieter R. M., Standiford T. J., Huffnagle G. B., Colletti L. M., Lukacs N. W., Kunkel S. L. "The good, the bad, and the ugly." The role of chemokines in models of human disease. J Immunol. 1996 May 15;156(10):3583–3586. [PubMed] [Google Scholar]
  46. Wu L., Gerard N. P., Wyatt R., Choe H., Parolin C., Ruffing N., Borsetti A., Cardoso A. A., Desjardin E., Newman W. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature. 1996 Nov 14;384(6605):179–183. doi: 10.1038/384179a0. [DOI] [PubMed] [Google Scholar]
  47. Zipfel P. F., Balke J., Irving S. G., Kelly K., Siebenlist U. Mitogenic activation of human T cells induces two closely related genes which share structural similarities with a new family of secreted factors. J Immunol. 1989 Mar 1;142(5):1582–1590. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES