Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jan 7;219:199–266. doi: 10.1016/S0074-7696(02)19014-0

Conventional and nonconventional roles of the nucleolus

Mark OJ Olson , Kamini Hingorani , Attila Szebeni
PMCID: PMC7133188  PMID: 12211630

Abstract

As the most prominent of subnuclear structures, the nucleolus has a well-established role in ribosomal subunit assembly. Additional nucleolar functions, not related to ribosome biogenesis, have been discovered within the last decade. Built around multiple copies of the genes for preribosomal RNA (rDNA), nucleolar structure is largely dependent on the process of ribosome assembly. The nucleolus is disassembled during mitosis at which time preribosomal RNA transcription and processing are suppressed; it is reassembled at the end of mitosis in part from components preserved from the previous cell cycle. Expression of preribosomal RNA (pre-rRNA) is regulated by the silencing of individual rDNA genes via alterations in chromatin structure or by controlling RNA polymerase I initiation complex formation. Preribosomal RNA processing and posttranscriptional modifications are guided by a multitude of small nucleolar RNAs. Nearly completed ribosomal subunits are exported to the cytoplasm by an established nuclear export system with the aid of specialized adapter molecules. Some preribosomal and nucleolar components are transiently localized in Cajal bodies, presumably for modification or assembly. The nonconventional functions of nucleolus include roles in viral infections, nuclear export, sequestration of regulatory molecules, modification of small RNAs, RNP assembly, and control of aging, although some of these functions are not well established. Additional progress in defining the mechanisms of each step in ribosome biogenesis as well as clarification of the precise role of the nucleolus in nonconventional activities is expected in the next decade.

Keywords: Nucleolus, Nucleolar proteins, Ribosome biogenesis, Preribosomal RNA, Small nucleolar RNA, RNA polymerase I, Cajal body, Signal recognition particle, Aging mechanisms

References

  1. Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J.D. Garland Publishing; New York: 1994. The Molecular Biology of the Cell; p. 378. [Google Scholar]
  2. Allain F.H., Bouvet P., Dieckmann T., Feigon J. Molecular basis of sequence-specific recognition of pre-ribosomal RNA by nucleolin. EMBO J. 2000;19:6870–6881. doi: 10.1093/emboj/19.24.6870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allain F.H.T., Gilbert D.E., Bouvet P., Feigon J. Solution structure of the two N-terminal RNA-binding domains of nucleolin and NMR study of the interaction with its RNA target. J. Mol. Biol. 2000;303:227–241. doi: 10.1006/jmbi.2000.4118. [DOI] [PubMed] [Google Scholar]
  4. Allmang C., Mitchell P., Petfalski E., Tollervey D. Degradation of ribosomal RNA precursors by the exosome. Nucleic Acids Res. 2000;28:1684–1691. doi: 10.1093/nar/28.8.1684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Almeida F., Saffrich R., Ansorge W., Carmo-Fonseca M. Microinjection of anti-coilin antibodies affects the structure of coiled bodies. J. Cell Biol. 1998;142:899–912. doi: 10.1083/jcb.142.4.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Anastassova-Kristeva M. The nucleolar cycle in man. J. Cell Sci. 1977;25:103–110. doi: 10.1242/jcs.25.1.103. [DOI] [PubMed] [Google Scholar]
  7. Andersen J.S., Lyon C.E., Fox A.H., Leung A.K., Lam Y.W., Steen H., Mann M., Lamond A.I. Directed proteomic analysis of the human nucleolus. Curr Biol. 2002;12:1–11. doi: 10.1016/s0960-9822(01)00650-9. [DOI] [PubMed] [Google Scholar]
  8. Arnett F.C., Reveille J.D., Valdez B.C. Autoantibodies to a nucleolar RNA helicase protein in patients with connective tissue diseases. Arthritis Rheum. 1997;40:1487–1492. doi: 10.1002/1529-0131(199708)40:8<1487::AID-ART18>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  9. Azum-Gelade M.C., Noaillac-Depeyre J., Caizergues-Ferrer M., Gas N. Cell cycle redistribution of U3 snRNA and fibrillarin. Presence in the cytoplasmic nucleolus remnant and in the prenucleolar bodies at telophase. J. Cell Sci. 1994;107:463–475. doi: 10.1242/jcs.107.2.463. (Pt 2) [DOI] [PubMed] [Google Scholar]
  10. Ballal N.R., Goldknopf I.L., Goldberg D.A., Busch H. The dynamic state of liver nucleolar proteins as reflected by their changes during administration of thioacetamide. Life Sci. 1974;14:1835–1845. doi: 10.1016/0024-3205(74)90401-9. [DOI] [PubMed] [Google Scholar]
  11. Barneche E., Steinmetz E., Echeverria M. Fibrillarin genes encode both a conserved nucleolar protein and a novel small nucleolar RNA involved in ribosomal RNA methylation in Arabidopsis thaliana. J. Biol. Chem. 2000;275:27212–27220. doi: 10.1074/jbc.M002996200. [DOI] [PubMed] [Google Scholar]
  12. Bassler J., Grandi P., Gadal O., Lessmann T., Petfalski E., Tollervey D., Lechner J., Hurt E. Identification of a 60S preribosomal particle that is closely linked to nuclear export. Mol. Cell. 2001;8:517–529. doi: 10.1016/s1097-2765(01)00342-2. [DOI] [PubMed] [Google Scholar]
  13. Beckmann R., Buchner K., Jungblut P.R., Eckerskom C., Weise C., Hilbert R., Hucho F. Nuclear substrate of protein kinase C. Eur. J. Biochem. 1992;210:45–51. doi: 10.1111/j.1432-1033.1992.tb17388.x. [DOI] [PubMed] [Google Scholar]
  14. Bertrand E., Houser-Scott F., Kendall A., Singer R.H., Engelke D.R. Nucleolar localization of early tRNA processing. Genes Dev. 1998;12:2463–2468. doi: 10.1101/gad.12.16.2463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Biggiogera M., Kaufmann S.H., Shaper J.H., Gas N., Amalric F., Fakan S. Distribution of nucleolar protein B23 and nucleolin during mouse spermatogenesis. Chromosoma. 1991;100:162–172. doi: 10.1007/BF00337245. [DOI] [PubMed] [Google Scholar]
  16. Bird A.P. Gene reiteration and gene amplification. In: Goldstein L., Prescott D.M., editors. Vol. 3. Academic Press; San Diego: 1980. pp. 62–113. (Cell Biology). [Google Scholar]
  17. Borer R.A., Lehner C.F., Eppenberger H.M., Nigg E.A. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell. 1989;56:379–390. doi: 10.1016/0092-8674(89)90241-9. [DOI] [PubMed] [Google Scholar]
  18. Borggrefe T., Wabl M., Akhmedov A.T., Jessberger R. A B-cell-specific DNA recombination complex. J. Biol. Chem. 1998;273:17025–17035. doi: 10.1074/jbc.273.27.17025. [DOI] [PubMed] [Google Scholar]
  19. Borovjagin A.V., Gerbi S.A. U3 Small nucleolar RNA is essential for cleavage at sites 1, 2 and 3 in pre-rRNA and determines which rRNA processing pathway is taken in Xenopus oocytes. J. Mol. Biol. 1999;286:1347–1363. doi: 10.1006/jmbi.1999.2527. [DOI] [PubMed] [Google Scholar]
  20. Borovjagin A.V., Gerbi S.A. Xenopus U3 snoRNA GAC-box A′ and box A sequences play distinct functional roles in rRNA processing. Mol. Cell. Biol. 2001;21:6210–6221. doi: 10.1128/MCB.21.18.6210-6221.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Boudonck K., Dolan L., Shaw P.J. The movement of coiled bodies visualized in living plant cells by the green fluorescent protein. Mol. Biol. Cell. 1999;10:2297–2307. doi: 10.1091/mbc.10.7.2297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Bousquet-Antonelli C., Vanrobays E., Gelugne J.P., Caizergues-Ferrer M., Henry Y. Rrp8p is a yeast nucleolar protein functionally linked to Garlp and involved in pre-rRNA cleavage at site A2. RNA. 2000;6:826–843. doi: 10.1017/s1355838200992288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Bouvet P., Diaz J.J., Kindbeiter K., Madjar J.J., Amahic F. Nucleolin interacts with several ribosomal proteins through its RGG domain. J. Biol. Chem. 1998;273:19025–19029. doi: 10.1074/jbc.273.30.19025. [DOI] [PubMed] [Google Scholar]
  24. Bouvet P., Allain F.H.T., Finger L.D., Dieckmann T., Feigon J. Recognition of pre-formed and flexible elements of an RNA stem-loop by nucleolin. J. Mol. Biol. 2001;309:763–775. doi: 10.1006/jmbi.2001.4691. [DOI] [PubMed] [Google Scholar]
  25. Brasch K., Ochs R.L. Nuclear bodies (NBs): A newly “rediscovered” organelle. Exp. Cell Res. 1992;202:211–223. doi: 10.1016/0014-4827(92)90068-j. [DOI] [PubMed] [Google Scholar]
  26. Brodsky A.S., Silver P.A. Pre-mRNA processing factors are required for nuclear export. RNA. 2000;6:1737–1749. doi: 10.1017/s1355838200001059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Brosh R.M., Jr., Majumdar A., Desai S., Hickson I.D., Bohr V.A., Seidman M.M. Unwinding of a DNA triple helix by the Werner and Bloom syndrome helicases. J. Biol. Chem. 2001;276:3024–3030. doi: 10.1074/jbc.M006784200. [DOI] [PubMed] [Google Scholar]
  28. Brouwer R., Allmang C., Raijmakers R., Van Aarssen Y., Egberts W.V., Petfalski E., Van Venrooij W.J., Tollervey D., Pruijn G.J. Three novel components of the human exosome. J. Biol. Chem. 2001;276:6177–6184. doi: 10.1074/jbc.M007603200. [DOI] [PubMed] [Google Scholar]
  29. Brun R.P., Ryan K., Sollner-Webb B. Factor C∗ the specific initiation component of the mouse RNA polymerase I holoenzyme, is inactivated early in the transcription process. Mol. Cell. Biol. 1994;14:5010–5021. doi: 10.1128/mcb.14.7.5010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Bugler B., Bourbon H., Lapeyre B., Wallace M.O., Chang J.H., Amalric E., Olson M.O. RNA binding fragments from nucleolin contain the ribonucleoprotein consensus sequence. J. Biol. Chem. 1987;262:10922–10925. [PubMed] [Google Scholar]
  31. Busch H., Smetana K. Academic Press[; New York: 1970. The Nucleolus. [Google Scholar]
  32. Busch R.K., Chan P.K., Busch H. Actinomycin D inhibition of monoclonal antibody binding to nucleolar phosphoprotein B23 (37/5.2) Life Sci. 1984;35:1777–1785. doi: 10.1016/0024-3205(84)90275-3. [DOI] [PubMed] [Google Scholar]
  33. Carmo-Fonseca M., Mendes-Soares L., Campos I. To be or not to be in the nucleolus. Nat. Cell Biol. 2000;2:E107–E112. doi: 10.1038/35014078. [DOI] [PubMed] [Google Scholar]
  34. Cavaille J., Buiting K., Kiefmann M., Lalande M., Brannan C.I., Horsthemke B., Bachellerie J.P., Brosius J., Huttenhofer A. Vol. 97. 2000. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization; pp. 14311–14316. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Chan P.K., Aldrich M., Busch H. Alterations in immunolocalization of the phosphoprotein B23 in HeLa cells during serum starvation. Exp. Cell. Res. 1985;161:101–110. doi: 10.1016/0014-4827(85)90494-x. [DOI] [PubMed] [Google Scholar]
  36. Chan P.K., Aldrich M., Cook R.G., Busch H. Amino acid sequence of protein B23 phosphorylation site. J. Biol. Chem. 1986;261:1868–1872. [PubMed] [Google Scholar]
  37. Chan P.K., Chan F.Y., Morris S.W., Xie Z. Isolation and characterization of the human nucleophosminB23 (NPM) gene: Identification of the YY1 binding site at the 5′ enhancer region. Nucleic Acids Res. 1997;25:1225–1232. doi: 10.1093/nar/25.6.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Chan W.Y., Liu Q.R., Borjigin J., Busch H., Rennert O.M., Tease L.A., Chan P.K. Characterization of the cDNA encoding human nucleophosmin and studies of its role in normal and abnormal growth. Biochemistry. 1989;28:1033–1039. doi: 10.1021/bi00429a017. [DOI] [PubMed] [Google Scholar]
  39. Chan W.Y., Liu Q.R., Borjigin J., Busch H., Rennert O.M., Tease L.A., Chan P.K. Cross-linkage of nucleophosmin in tumor cells by nitrogen mustard. Cancer Res. 1989;4:3721–3725. [PubMed] [Google Scholar]
  40. Chang J.H., Olson M.O.J. Structure of the gene of rat nucleolar protein B23. J. Biol. Chem. 1990;265:18227–18233. [PubMed] [Google Scholar]
  41. Chang J.H., Lin J.Y., Wu M.H., Yung B.Y.M. Evidence for the ability of nucleophosmin/B23 to bind ATP. Biochem. J. 1998;329:539–544. doi: 10.1042/bj3290539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Charroux B., Pellizzoni L., Perkinson R.A., Yong J., Shevchenko A., Mann M., Dreyfuss G. Gemin4: A novel component of the SMN complex that is found in both gems and nucleoli. J. Cell Biol. 2000;148:1177–1186. doi: 10.1083/jcb.148.6.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Chekanova J.A., Shaw R.J., Wills M.A., Belostotsky D.A. Poly(A) tail-dependent exonuclease AtRrp41p from Arabidopsis thaliana rescues 5.8 S rRNA processing and mRNA decay defects of the yeast ski6 mutant and is found in an exosome-sized complex in plant and yeast cells. J. Biol. Chem. 2000;275:33158–33166. doi: 10.1074/jbc.M005493200. [DOI] [PubMed] [Google Scholar]
  44. Chen D., Huang S. Nucleolar components involved in ribosome biogenesis cycle between the nucleolus and nucleoplasm in interphase cells. J. Cell Biol. 2001;153:169–176. doi: 10.1083/jcb.153.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Chooi W.Y., Leiby K.R. Vol. 78. 1981. An electron microscopic method for localization of ribosomal proteins during transcription of ribosomal DNA: A method for studying protein assembly; pp. 4823–4827. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Chou C.C., Yung B.Y.M. Increased stability of nucleophosminB23 in anti-apoptotic effect of Ras during serum deprivation. Mol. Pharmacol. 2001;59:38–45. doi: 10.1124/mol.59.1.38. [DOI] [PubMed] [Google Scholar]
  47. Christensen M.E., Fuxa K.P. The nucleolar protein, B-36, contains a glycine and dimethylarginine-rich sequence conserved in several other nuclear RNA-binding proteins. Biochem. Biophys. Res. Commun. 1988;155:1278–1283. doi: 10.1016/s0006-291x(88)81279-8. [DOI] [PubMed] [Google Scholar]
  48. Christensen M.E., Beyer A.L., Walker B., LeStourgeon W.M. Identification of NG, NG-dimethylarginine in a nuclear protein from the lower eukaryote Physarum polycephalum homologous to the major proteins of mammalian 40S ribonucleoprotein particles. Biochem. Biophys. Res. Commun. 1977;74:621–629. doi: 10.1016/0006-291x(77)90348-5. [DOI] [PubMed] [Google Scholar]
  49. Cockell M.M., Gasser S.M. The nucleolus: Nucleolar space for rent. Curr Biol. 1999;9:R575–R576. doi: 10.1016/s0960-9822(99)80359-5. [DOI] [PubMed] [Google Scholar]
  50. Colley A., Beggs J.D., Tollervey D., Lafontaine D.L.J. Dhrlp, a putative DEAH-Box RNA helicase, is associated with the box C+D snoRNP U3. Mol. Cell. Biol. 2000;20:7238–7246. doi: 10.1128/mcb.20.19.7238-7246.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Corporeau C.D., Angelier N., Penrad-Mobayed M. HSP70 is involved in the control of chromosomal transcription in the amphibian oocyte. Exp. Cell Res. 2000;260:222–232. doi: 10.1006/excr.2000.5003. [DOI] [PubMed] [Google Scholar]
  52. Davis A.R., Alevy Y.G., Chellaiah A., Quinn M.T., Mohanakumar T. Characterization of HDJ-2, a human 40 kD heat shock protein. Int. J. Biochem. Cell Biol. 1998;30:1203–1221. doi: 10.1016/s1357-2725(98)00091-0. [DOI] [PubMed] [Google Scholar]
  53. De Cárcer G., Medina F.J. Simultaneous localization of transcription and early processing markers allows dissection of functional domains in the plant cell nucleolus. J. Struct Biol. 2000;128:139–151. doi: 10.1006/jsbi.1999.4187. [DOI] [PubMed] [Google Scholar]
  54. Dechampesme A.M., Koroleva O., Leger-Silvestre I., Gas N., Camier S. Assembly of 5S ribosomal RNA is required at a specific step of the pre-rRNA processing pathway. J. Cell Biol. 1999;145:1369–1380. doi: 10.1083/jcb.145.7.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Defossez P.-A., Prusty R., Kaeberlein M., Lin S.-J., Ferrigno P., Silver P.A., Keil R.L., Guarente L. Elimination of replication block protein Fobl extends the life span of yeast mother cells. Mol. Cell. 1999;3:447–455. doi: 10.1016/s1097-2765(00)80472-4. [DOI] [PubMed] [Google Scholar]
  56. De la Cruz J., Kressler D., Linder P. Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem. Sci. 1999;24:192–198. doi: 10.1016/s0968-0004(99)01376-6. [DOI] [PubMed] [Google Scholar]
  57. Dempsey L.A., Hanakahi L.A., Maizels N. A specific isoform of hnRNP D interacts with DNA in the LR1 heterodimer: Canonical RNA binding motifs in a sequence-specific duplex DNA binding protein. J. Biol. Chem. 1998;273:29224–29229. doi: 10.1074/jbc.273.44.29224. [DOI] [PubMed] [Google Scholar]
  58. Deshmukh M., Tsay Y.F., Paulovich A.G., Woolford J.L., Jr. Yeast ribosomal protein L1 is required for the stability of newly synthesized 5S rRNA and the assembly of 60S ribosomal subunits. Mol. Cell. Biol. 1993;13:2835–2845. doi: 10.1128/mcb.13.5.2835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Dez C., Henras A., Faucon B., Lafontaine D., Caizergues-Ferrer M., Henry Y. Stable expression in yeast of the mature form of human telomerase RNA depends on its association with the box H/ACA small nucleolar RNP proteins Cbf5p, Nhp2p and Nop10p. Nucleic Acids Res. 2001;29:598–603. doi: 10.1093/nar/29.3.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Dick F.A., Eisinger D.P., Trumpower B.L. Exchangeability of Qsr1p, a large ribosomal subunit protein required for subunit joining, suggests a novel translational regulatory mechanism. FEBS Lett. 1997;419:1–3. doi: 10.1016/s0014-5793(97)01402-6. [DOI] [PubMed] [Google Scholar]
  61. Dousset T., Wang C., Verheggen C., Chen D., Hernandez-Verdun D., Huang S. Initiation of nucleolar assembly is independent of RNA polymerase I transcription. Mol. Biol. Cell. 2000;11:2705–2717. doi: 10.1091/mbc.11.8.2705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Dragon F., Pogcic V., Filipowicz W. In vitro assembly of human H/ACA small nucleolar RNPs reveals unique features of U17 and telomerase RNAs. Mol. Cell. Biol. 2000;20:3037–3048. doi: 10.1128/mcb.20.9.3037-3048.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Dreyfuss G., Matunis M.J., Pinol-Roma S., Burd C.G. hnRNP proteins and biogenesis of mRNA. Annu. Rev. Biochem. 1993;62:289–321. doi: 10.1146/annurev.bi.62.070193.001445. [DOI] [PubMed] [Google Scholar]
  64. Dumbar T.S., Gentry G.A., Olson M.O. Interaction of nucleolar phosphoprotein B23 with nucleic acids. Biochemistry. 1989;28:9495–9501. doi: 10.1021/bi00450a037. [DOI] [PubMed] [Google Scholar]
  65. Dunbar D.A., Wormsley S., Lowe T.M., Baserga S.J. Fibrillarin-associated box C/D small nucleolar RNAs in Trypanosoma brucei—Sequence conservation and implications for 2′-O-ribose methylation of rRNA. J. Biol. Chem. 2000;275:14767–14776. doi: 10.1074/jbc.m001180200. [DOI] [PubMed] [Google Scholar]
  66. Dundr M., Olson M.O.J. Partially processed pre-rRNA is preserved in association with processing components in nucleolus-derived foci during mitosis. Mol. Biol. Cell. 1998;9:2407–2422. doi: 10.1091/mbc.9.9.2407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Dundr M., Leno G.H., Hammarskjöld M.L., Rekosh D., Helga-Maria C., Olson M.O. The roles of nucleolar structure and function in the subcellular location of the HIV-1 Rev protein. J. Cell Sci. 1995;108:2811–2823. doi: 10.1242/jcs.108.8.2811. [DOI] [PubMed] [Google Scholar]
  68. Dundr M., Meier U.T., Lewis N., Rekosh D., Hammarskjℓd M.L., Olson M.O.J. A class of nonribosomal nucleolar components is located in chromosome periphery and in nucleolus-derived foci during anaphase and telophase. Chromosoma. 1997;105:407–417. doi: 10.1007/BF02510477. [DOI] [PubMed] [Google Scholar]
  69. Dundr M., Misteli T., Olson M.O.J. The dynamics of postmitotic re-assembly of the nucleolus. J. Cell. Biol. 2000;150:443–446. doi: 10.1083/jcb.150.3.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Dutta S., Akey I.V., Dingwall C., Hartman K.L., Laue T., Nolte R.T., Head J.F., Akey C.W. The crystal structure of nucleoplasmin-core. Implications for histone binding and nucleosome assembly. Mol. Cell. 2001;8:841–853. doi: 10.1016/s1097-2765(01)00354-9. [DOI] [PubMed] [Google Scholar]
  71. Eichler D.C., Craig N. Processing of eukaryotic ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol. 1994;49:197–239. doi: 10.1016/s0079-6603(08)60051-3. [DOI] [PubMed] [Google Scholar]
  72. Elicieri G.L. Small nucleolar RNAs. Cell. Mol. Life Sci. 1999;56:22–31. doi: 10.1007/s000180050003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Ellis R.J. Molecular chaperones: Avoiding the crowd. Curr. Biol. 1997;7:R531–R533. doi: 10.1016/s0960-9822(06)00273-9. [DOI] [PubMed] [Google Scholar]
  74. Eppens N.A., Rensen S., Granneman S., Raue H.A., Venema J. The roles of Rrp5p in the synthesis of yeast 18S and 5.8S rRNA can be functionally and physically separated. RNA. 1999;5:779–793. doi: 10.1017/s1355838299990313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Fan H., Penman S. Regulation of synthesis and processing of nucleolar components in metaphase-attested cells. J. Mol. Biol. 1971;59:27–42. doi: 10.1016/0022-2836(71)90411-6. [DOI] [PubMed] [Google Scholar]
  76. Fankhauser C., Izaurralde E., Adachi Y., Wingfield P., Laemmli U.K. Specific complex of human immunodeficiency virus type 1 Rev and nucleolar B23 proteins: Dissociation by the Rev response element. Mol. Cell. Biol. 1991;11:2567–2575. doi: 10.1128/mcb.11.5.2567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Fatica A., Galardi S., Altieri E., Bozzoni I. Fibrillarin binds directly and specifically to U16 box C/D snoRNA. RNA. 2000;6:88–95. doi: 10.1017/s1355838200991623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Feuerstein N., Mond J.J. “Numatrin”, a nuclear matrix protein associated with induction of proliferation in B lymphocytes. J. Biol. Chem. 1987;262:11389–11397. [PubMed] [Google Scholar]
  79. Feuerstein N., Spiegel S., Mond J.J. The nuclear matrix protein, numatrin (1323), is associated with growth factor induced mitogenesis in swiss 3T3 fibroblasts and with T lymphocyte proliferation stimulated by lectins and anti-T cell antigen receptor antibody. J. Cell Biol. 1988;107:1629–1642. doi: 10.1083/jcb.107.5.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Feuerstein N., Mond J.J., Kinchington P.R., Hickey R., Linsberg M.L.K., Hay L., Ruyechan W.T. Evidence for DNA binding activity of ntmiatrin (B23), a cell-cycle regulated nuclear matrix protein. Biophys. Biochim. Acta. 1990;1087:127–136. doi: 10.1016/0167-4781(90)90196-9. [DOI] [PubMed] [Google Scholar]
  81. Fields A.P., Kaufmann S.H., Shaper J.H. Analysis of the internal nuclear matrix, oligomers of a 38 kD nucleolar polypeptide stabilized by disulfide bonds. Exp. Cell Res. 1986;164:139–153. doi: 10.1016/0014-4827(86)90461-1. [DOI] [PubMed] [Google Scholar]
  82. Filipowicz W. Vol. 97. 2000. Imprinted expression of small nucleolar RNAs in brain: Time for RNomics; pp. 14035–14037. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Filippini D., Bozzoni L., Caffarelli E. p62, a novel Xenopus laevis component of box C/D snoRNPs. RNA. 2000;6:391–401. doi: 10.1017/s135583820099174x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Finch R.A., Revanker G.R., Chan P.K. Structural and functional relationships of toyocamycin on NPM translocation. Anti-Cancer Drug Design. 1997;12:205–215. [PubMed] [Google Scholar]
  85. Fischer H., Zhang X.U., O'Brien K.P., Kylsten P., Engvall E. C7, a novel nucleolar protein, is the mouse homologue of the Drosophila late puff product L82 and an isoform of human OXRL. Biochem. Biophys. Res. Commun. 2001;281:795–803. doi: 10.1006/bbrc.2001.4345. [DOI] [PubMed] [Google Scholar]
  86. Fontana E. Florence; 1781. Traité sur le venin de la vipère; p. 268. [Google Scholar]
  87. Franke W.W. Matthias Jacob Schleiden and the definition of the cell nucleus. Eur. J. Cell. Biol. 1988;47:45–156. [PubMed] [Google Scholar]
  88. Gall J.G. A role for Cajal bodies in assembly of the nuclear transcription machinery. FEBS Lett. 2001;498:164–167. doi: 10.1016/s0014-5793(01)02461-9. [DOI] [PubMed] [Google Scholar]
  89. Ganot P., Jady B.E., Bortolin M.-L., Darzacq X., Kiss T. Nucleolar factors direct the 2′-O-ribose methylation and pseudouridylation of U6 spliceosomal RNA. Mol. Cell. Biol. 1999;19:6906–6917. doi: 10.1128/mcb.19.10.6906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Gao Z.H., Metherall J., Virshup D.M. Identification of casein kinase I substrates by in vitro expression cloning screening. Biochem. Biophys. Res. Commun. 2000;268:562–566. doi: 10.1006/bbrc.2000.2168. [DOI] [PubMed] [Google Scholar]
  91. Garcia M.C., Zhou J.H., Henning D., Arnett F.C., Valdez B.C. Unique epitopes in RNA helicase II/Gu protein recognized by serum from a watermelon stomach patient. Mol. Immunol. 2000;37:351–359. doi: 10.1016/s0161-5890(00)00062-6. [DOI] [PubMed] [Google Scholar]
  92. Gautier T., Fomproix N., Masson C., Azum-Gelade M.C., Gas N., Hernandez-Verdun D. Fate of specific nucleolar perichromosomal proteins during mitosis: Cellular distribution and association with U3 snoRNA. Biol. Cell. 1994;82:81–93. doi: 10.1016/s0248-4900(94)80010-3. [DOI] [PubMed] [Google Scholar]
  93. Geerlings T.H., Vos J.C., Raue H.A. The final step in the formation of 25S rRNA in Saccharomyces cerevisiae is performed by 5′ → 3′ exonucleases. RNA. 2000;6:1698–1703. doi: 10.1017/s1355838200001540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Ghisolfi-Nieto L., Joseph G., Puvion-Dutilleul E., Amalric E., Bouvet P. Nucleolin is a sequence-specific RNA-binding protein: Characterization of targets on pre-ribosomal RNA. J. Mol. Biol. 1996;260:34–53. doi: 10.1006/jmbi.1996.0380. [DOI] [PubMed] [Google Scholar]
  95. Ginisty H., Amalric F., Bouvet P. Nucleolin functions in the first step of ribosomal RNA processing. EMBO J. 1998;17:1476–1486. doi: 10.1093/emboj/17.5.1476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Ginisty H., Sicard H., Roger B., Bouvet P. Structure and functions of nucleolin. J. Cell Sci. 1999;112:761–772. doi: 10.1242/jcs.112.6.761. [DOI] [PubMed] [Google Scholar]
  97. Ginisty H., Serin G., Ghisolfi-Nieto L., Roger B., Libante V., Amalric F., Bouvet P. Interaction of nucleolin with an evolutionarily conserved pre-ribosomal RNA sequence is required for the assembly of the primary processing complex. J. Biol. Chem. 2000;275:18845–18850. doi: 10.1074/jbc.M002350200. [DOI] [PubMed] [Google Scholar]
  98. Grein S., Raymond K., Cochet C., Pyerin W., Chambaz E.M., Filhol O. Searching interaction partners of protein kinase CK2 subunit by two-hybrid screening. Mol. Cell. Biochem. 1999;191:105–109. [PubMed] [Google Scholar]
  99. Grosshans H., Deinert K., Hurt E., Simos G. Biogenesis,of the signal recognition particle (SRP) involves import of SRP proteins into the nucleolus, assembly with the SRP-RNA, and Xpo1p-mediated export. J. Cell Biol. 2001;153:745–761. doi: 10.1083/jcb.153.4.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Grummt I. Regulation of mammalian ribosomal gene transcription by RNA polymerase I. Prog. Nucleic Acid Res. Mol. Biol. 1999;62:109–154. doi: 10.1016/s0079-6603(08)60506-1. [DOI] [PubMed] [Google Scholar]
  101. Guarente L. Link between aging and the nucleolus. Genes Dev. 1997;11:2449–2455. doi: 10.1101/gad.11.19.2449. [DOI] [PubMed] [Google Scholar]
  102. Hadjiolov A.A. Springer Verlag; Vienna: 1985. The nucleolus and ribosome biogenesis. [Google Scholar]
  103. Hanakahi L.A., Dempsey L.A., Li M.J., Maizels N. Vol. 94. 1997. Nucleolin is one component of the B cell-specific transcription factor and switch region binding protein, LRl; pp. 3605–3610. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Hanakahi L.A., Bu Z., Maizels N. The C-terminal domain of nucleolin accelerates nucleic acid annealing. Biochemistry. 2000;39:15493–15499. doi: 10.1021/bi001683y. [DOI] [PubMed] [Google Scholar]
  105. Hannan R.D., Stefanovsky V., Taylor L., Moss T., Rothblum L.I. Vol. 93. 1996. Overexpression of the transcription factor UBF1 is sufficient to increase ribosomal DNA transcription in neonatal cardiomyocytes: Implications for cardiac hypertrophy; pp. 8750–8755. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Hannan K.M., Rothblum L.I., Jefferson L.S. Regulation of ribosomal DNA transcription by insulin. Am. J. Physiol. Cell Physiol. 1998;275:C130–C138. doi: 10.1152/ajpcell.1998.275.1.C130. [DOI] [PubMed] [Google Scholar]
  107. Hannan R., Taylor L., Cavanaugh A., Hannan K., Rothblum L.I. UBF and the regulation of ribosomal DNA transcription. In: Paule M., editor. Transcription of Eukaryotic Ribosomal RNA Genes by RNA Polymerase I. Springer-Verlag; New York: 1998. pp. 221–232. [Google Scholar]
  108. Hannan K.M., Kennedy B.K., Cavanaugh A.H., Hannan R.D., Hirschler-Laszkiewicz I., Jefferson L.S., Rothblum L.I. RNA polymerase I transcription in confluent cells: Rb downregulates rDNA transcription during confluence-induced cell cycle arrest. Oncogene. 2000;19:3487–3497. doi: 10.1038/sj.onc.1203690. [DOI] [PubMed] [Google Scholar]
  109. Harnpicharnchai P., Jakovljevic J., Horsey E., Miles T., Roman J., Rout M., Meagher D., Imai B., Guo Y., Brame C.J., Shabanowitz J., Hunt D.F., Woolford J.L. Composition and functional characterization of yeast 66s ribosome assembly intermediates. Mol. Cell. 2001;8:505–515. doi: 10.1016/s1097-2765(01)00344-6. [DOI] [PubMed] [Google Scholar]
  110. Hebert M.D., Matera A.G. Self-association of coilin reveals a common theme in nuclear body localization. Mol. Biol. Cell. 2000;11:4159–4171. doi: 10.1091/mbc.11.12.4159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Herrera A.H., Olson M.O. Association of protein C23 with rapidly labeled nucleolar RNA. Biochemistry. 1986;25:6258–6264. doi: 10.1021/bi00368a063. [DOI] [PubMed] [Google Scholar]
  112. Herrera J.E., Savkur R., Olson M.O. The ribonuclease activity of nucleolar protein B23. Nucleic Acids Res. 1995;23:3974–3979. doi: 10.1093/nar/23.19.3974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Herrera J.E., Correia J.J., Jones A.E., Olson M.O.J. Sedimentation analyses of the salt and divalent metal ion induced oligomerization of nucleolar protein B23. Biochemistry. 1996;35:2668–2673. doi: 10.1021/bi9523320. [DOI] [PubMed] [Google Scholar]
  114. Hickey A.J., Macario A.J., Conway deMacario E. Identification of genes in the genome of the archaeon Methanosarcina mazeii that code for homologs of nuclear eukaryotic molecules involved in RNA processing. Gene. 2000;253:77–85. doi: 10.1016/s0378-1119(00)00235-3. [DOI] [PubMed] [Google Scholar]
  115. Hingorani K., Szebeni A., Olson M.O.J. Mapping the functional domains of nucleolar protein B23. J. Biol. Chem. 2000;275:24451–24457. doi: 10.1074/jbc.M003278200. [DOI] [PubMed] [Google Scholar]
  116. Hiscox J.A., Wurm T., Wilson L., Britton P., Cavanagh D., Brooks G. The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. J. Virol. 2001;75:506–512. doi: 10.1128/JVI.75.1.506-512.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Ho J.H., Kallstrom G., Johnson A.W. Nmd3p is a Crmlp-dependent adapter protein for nuclear export of the large ribosomal subunit. J. Cell Biol. 2000;151:1057–1066. doi: 10.1083/jcb.151.5.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Ho J.H., Kallstrom G., Johnson A.W. Nascent 60S ribosomal subunits enter the free pool bound by Nmd3p. RNA. 2000;6:1625–1634. doi: 10.1017/s1355838200001291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Hozak P. Catching RNA polymerase I in Flagranti: Ribosomal genes are transcribed in the dense fibrillar component of the nucleolus. Exp. Cell Res. 1995;216:285–289. doi: 10.1006/excr.1995.1036. [DOI] [PubMed] [Google Scholar]
  120. Huang W.H., Yung B.Y., Syu W.J., Lee Y.H. The nucleolar phosphoprotein B23 interacts with hepatitis delta antigens and modulates the hepatitis delta virus RNA replication. J. Biol. Chem . 2001;276:25166–25175. doi: 10.1074/jbc.M010087200. [DOI] [PubMed] [Google Scholar]
  121. Hurt E., Hannus S., Schmelzl B., Lau D., Tollervey D., Simos G. A novel in vivo assay reveals inhibition of ribosomal nuclear export in Ran-cycle and nucleoporin mutants. J. Cell Biol. 1999;144:389–401. doi: 10.1083/jcb.144.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Hyttel P., Laurincik J., Rosenkranz C., Rath D., Niemann H., Ochs R.L., Schellander K. Nucleolar proteins and ultrastructure in preimplantation porcine embryos developed in vivo. Biol. Reprod. 2000;63:1848–1856. doi: 10.1095/biolreprod63.6.1848. [DOI] [PubMed] [Google Scholar]
  123. Iborra F.J., Jackson D.A., Cook P.R. Coupled transcription and translation within nuclei of mammalian cells. Science. 2001;293:1139–1142. doi: 10.1126/science.1061216. [DOI] [PubMed] [Google Scholar]
  124. Imai H., Ochs R.L., Kiyosawa K., Furuts S., Nalamura R.M., Tan E.M. Nucleolar antigens and autoantibodies in hepatocellular carcinoma and other malignancies. Am. J. Pathol. 1992;140:859–870. [PMC free article] [PubMed] [Google Scholar]
  125. Isaac C., Yang Y.F., Meier U.T. Nopp140 functions as a molecular link between the nucleolus and the coiled bodies. J. Cell Biol. 1998;142:319–329. doi: 10.1083/jcb.142.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Jacob S.T., Ghosh A.K. Control of RNA polymerase I-directed transcription: Recent trends. J. Cell. Biochem. Suppl. 1999;32–33:41–50. doi: 10.1002/(sici)1097-4644(1999)75:32+<41::aid-jcb6>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
  127. Jacobson M.R., Pederson T. Vol. 95. 1998. Localization of signal recognition particle RNA in the nucleolus of mammalian cells; pp. 7981–7986. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Jankowsky E., Gross C.H., Shuman S., Pyle A.M. Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. Science. 2001;291:121–125. doi: 10.1126/science.291.5501.121. [DOI] [PubMed] [Google Scholar]
  129. Jansen R., Tollervey D., Hurt E.C. A U3 snoRNP protein with homology to splicing factor PRP4 and G beta domains is required for ribosomal RNA processing. EMBO J. 1993;12:2549–2558. doi: 10.1002/j.1460-2075.1993.tb05910.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Jarrous N., Hannus S., Schmelzl B., Lau D., Tollervey D., Simos G. Localization in the nucleolus and coiled bodies of protein subunits of the ribonucleoprotein ribonuclease P. J. Cell Biol. 1999;146:559–571. doi: 10.1083/jcb.146.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Jimenez-Garcia L.F., Segura-Valdez M.L., Ochs R.L., Rothblum L.I., Hannan R., Spector D.L. Nucleologenesis: U3 snRNA-containing prenucleolar bodies move to sites of active pre-rRNA transcription after mitosis. Mol. Biol. Cell. 1994;5:955–966. doi: 10.1091/mbc.5.9.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Jones C.E., Busch H., Olson M.O. Sequence of a phosphorylation site in nucleolar protein B23. Biochim. Biophys. Acta. 1981;667:209–212. doi: 10.1016/0005-2795(81)90081-7. [DOI] [PubMed] [Google Scholar]
  133. Karpen G.H., Schaefer J.E., Laird C.D. A Drosophila rRNA gene located in euchromatin is active in transcription and nucleolus formation. Genes Dev. 1988;2:1745–1763. doi: 10.1101/gad.2.12b.1745. [DOI] [PubMed] [Google Scholar]
  134. Kass S., Tyc K., Steitz J.A., Sollner-Webb B. The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing. Cell. 1990;60:897–908. doi: 10.1016/0092-8674(90)90338-f. [DOI] [PubMed] [Google Scholar]
  135. Kendall A., Hull M.W., Bertrand E., Good P.D., Singer R.H., Engelke D.R. Vol. 97. 2000. A CBF5 mutation that disrupts nucleolar localization of early tRNA biosynthesis in yeast also suppresses tRNA gene-mediated transcriptional silencing; pp. 3108–13113. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Kiss T. Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J. 2. 2001;20:3617–3622. doi: 10.1093/emboj/20.14.3617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Kjems J., Askjaer P. Rev protein and its cellular partners. Adv. Pharmacol. 2000;48:251–298. doi: 10.1016/s1054-3589(00)48009-9. [DOI] [PubMed] [Google Scholar]
  138. Klein J., Grummt I. Vol. 96. 1999. Cell cycle-dependent regulation of ma polymerase I transcription. The nucleolar transcription factor UBF is inactive in mitosis and early G1; pp. 6096–6101. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Knowlton A.A. Mutation of amino acids 246–251 alters nuclear accumulation of human heat shock protein (HSP) 72 with stress, but does not reduce viability. J. Mol. Cell Cardiol. 1999;31:523–532. doi: 10.1006/jmcc.1998.0883. [DOI] [PubMed] [Google Scholar]
  140. Kondo T., Minamino N., Nagamura-Inoue T., Matsumoto M., Taniguchi T., Tanaka N. Identification and characterization of nucleophosmin/B23/numatrin which binds the anti-oncogenic transcription factor IRF-1 and manifests oncogenic activity. Oncogene. 1997;15:1275–1281. doi: 10.1038/sj.onc.1201286. [DOI] [PubMed] [Google Scholar]
  141. Kressler D., Linder P., de La C.J. Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 1999;19:7897–7912. doi: 10.1128/mcb.19.12.7897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Kubota S., Siomi H., Satoh T., Endo S., Hatanaka M. Function similarity of HIV 1 and HTLV 1 Rex proteins: Identification of a new nucleolar targeting signal in rev protein. Biochem. Biophys. Res. Commun. 1989;162:963–970. doi: 10.1016/0006-291x(89)90767-5. [DOI] [PubMed] [Google Scholar]
  143. Kuhn A. Regulation of rRNA transcription in vertebrates. In: Paule M., editor. Transcription of Eukaryotic Ribosomal RNA Genes by RNA Polymerase I. Springer-Verlag; New York: 1998. pp. 201–219. [Google Scholar]
  144. Lafontaine D.L., Tollervey D. The function and synthesis of ribosomes. Nat. Rev. Mol. Cell Biol. 2001;2:514–520. doi: 10.1038/35080045. [DOI] [PubMed] [Google Scholar]
  145. Lalev A.I., Nazar R.N. A chaperone for ribosome maturation. J. Biol. Chem. 2001;276:16655–16659. doi: 10.1074/jbc.M101157200. [DOI] [PubMed] [Google Scholar]
  146. Lange T.S., Gerbi S.A. Transient nucleolar localization of U6 small nuclear RNA in Xenopus laevis oocytes. Mol. Biol. Cell. 2000;11:2419–2428. doi: 10.1091/mbc.11.7.2419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Lazdins I.B., Delannowy M., Sollner-Webb B. Analysis of nucleolar transcription and processing domains and pre-rRNA movements by in situ hybridization. Chromosoma. 1997;105:481–495. doi: 10.1007/BF02510485. [DOI] [PubMed] [Google Scholar]
  148. Lee S.J., Baserga S.J. Vol. 94. 1997. Functional separation of pre-rRNA processing steps revealed by truncation of the U3 small nucleolar ribonucleoprotein component, Mpp10; pp. 13536–13541. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Lee S.J., Baserga S.J. Imp3p and Imp4p, two specific components of the U3 small nucleolar ribonucleoprotein that are essential for pre-18S rRNA processing. Mol. Cell. Biol. 1999;19:5441–5452. doi: 10.1128/mcb.19.8.5441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Léger-Silvestre L., Noaillac-Depeyre J., Faubladier M., Gas N. Structural and functional analysis of the nucleolus of the fission yeast Schizosaccharomyces pombe. Eur. J. Cell Biol. 1997;72:13–23. [PubMed] [Google Scholar]
  151. Le Pause S., Masson C., Heliot L., Chassery J.M., Junera H.R., Hernandez-Verdun D. 3-D organization of ribosomal transcription units after DRB inhibition of RNA polymerase II transcription. J. Cell Sci. 1999;112:2145–2154. doi: 10.1242/jcs.112.13.2145. [DOI] [PubMed] [Google Scholar]
  152. Lepoint A., Goessens G. Nucleologenesis in Ehrlich tumour cells. Exp. Cell Res. 1978;117:89–94. doi: 10.1016/0014-4827(78)90430-5. [DOI] [PubMed] [Google Scholar]
  153. Li Y.P., Busch R.K., Valdez B.C., Busch H. C23 interacts with B23, a putative nucleolar-localization-signal-binding protein. Eur. J. Biochem. 1996;237:153–158. doi: 10.1111/j.1432-1033.1996.0153n.x. [DOI] [PubMed] [Google Scholar]
  154. Lindstrω M.S., Klangby U., Inoue R., Pisa P., Wiman K.G., Asker C.E. Immunolocalization of human p14ARF to the granular component of the interphase nucleolus. Exp. Cell Res. 2000;256:400–410. doi: 10.1006/excr.2000.4854. [DOI] [PubMed] [Google Scholar]
  155. Lischwe M.A., Ochs R.L., Reddy R., Cook R.G., Yeoman L.C., Tan E.M., Reichlin M., Busch H. Purification and partial characterization of a nucleolar scleroderma antigen (Mr = 34,000; pl, 8.5) rich in NG,NG-dimethylarginine. J. Biol. Chem. 1985;260:14304–14310. [PubMed] [Google Scholar]
  156. Liu Q.R., Chan P.K. Formation of nucleophosmin/B23 oligomers requires both the amino- and the carboxyl-terminal domains of the protein. Eur. J. Biochem. 1991;200:715–721. doi: 10.1111/j.1432-1033.1991.tb16236.x. [DOI] [PubMed] [Google Scholar]
  157. Liu C-J., Wang H., Lengyel E. The interferon-inducible nucleolar p204 protein binds the ribosomal RNA-specific UBFI transcription factor and inhibits ribosomal RNA transcription. EMBO J. 1999;18:2845–2854. doi: 10.1093/emboj/18.10.2845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Llanos S., Clark P.A., Rowe J., Peters G. Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus. Nat. Cell Biol. 2001;3:445–452. doi: 10.1038/35074506. [DOI] [PubMed] [Google Scholar]
  159. Lucchini R., Sogo J.M. The dynamic structure of ribosomal RNA gene chromatin. In: Paule M., editor. Transcription of Eukaryotic Ribosomal RNA Genes by RNA Polymerase I. Springer-Verlag; New York: 1998. pp. 255–276. [Google Scholar]
  160. Lukowiak A.A., Granneman S., Mattox S.A., Speckmann W.A., Jones K., Pluk H., Venrooij W.J., Terns R.M., Terns M.P. Interaction of the U3–55k protein with U3 snoRNA is mediated by the box B/C motif of U3 and the WD repeats of U3–55k. Nucleic Acids Res. 2000;28:3462–3471. doi: 10.1093/nar/28.18.3462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Luo J., Nikolaev A.Y., Imai S., Chen D., Su F., Shiloh A., Guarente L., Gu W. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell. 2001;107:137–148. doi: 10.1016/s0092-8674(01)00524-4. [DOI] [PubMed] [Google Scholar]
  162. MacCallum D.E., Hall P.A. The location of pKi67 in the outer dense fibrillary compartment of the nucleolus points to a role in ribosome biogenesis during the cell division cycle. J. Pathol. 2000;190:537–544. doi: 10.1002/(SICI)1096-9896(200004)190:5<537::AID-PATH577>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  163. Machwe A., Orren D.K., Bohr V.A. Accelerated methylation of ribosomal RNA genes during the cellular senescence of Werner syndrome fibroblasts. FASEB. 2000;14:1715–1724. doi: 10.1096/fj.99-0926com. [DOI] [PubMed] [Google Scholar]
  164. Maden B.E.H., Hughes J.M.X. Eukaryotic ribosomal RNA: The recent excitement in the nucleotide modification problem. Chromosoma. 1997;105:391–400. doi: 10.1007/BF02510475. [DOI] [PubMed] [Google Scholar]
  165. Mahajan P.B., Thompson E.A. Hormonal regulation of transcription of rDNA. Purification and characterization of the hormone-regulated transcription factor IC. J. Biol. Chem. 1990;265:16225–16233. [PubMed] [Google Scholar]
  166. Maiorano D., Brimage L.J., Leroy D., Kearsey S.E. Functional conservation and cell cycle localization of the Nhp2 core component of H + ACA snoRNPs in fission and budding yeasts. Exp. Cell Res. 1999;252:165–174. doi: 10.1006/excr.1999.4607. [DOI] [PubMed] [Google Scholar]
  167. Marciniak R.A., Lombard D.B., Johnson E.B., Guarente L. Vol. 95. 1998. Nucleolar localization of the Werner syndrome protein in human cells; pp. 6887–6892. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Martelli A.M., Robuffo I., Bortul R., Ochs R.L., Luchetti E., Cocco L., Zweyer M., Bareggi R., Falcieri E. Behavior of nucleolar proteins during the course of apoptosis in camptothecintreated HL60 cells. J. Cell. Biochem. 2000;78:264–277. [PubMed] [Google Scholar]
  169. Martelli F., Hamilton T., Silver D.P., Sharpless N.E., Bardeesy N., Rokas M., DePinho R.A., Livingston D.M., Grossman S.R. Vol. 98. 2001. p19ARF targets certain E2F species for degradation; pp. 4455–4460. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Matera A.G. Nuclear bodies: Multifaceted subdomains of the interchromatin space. Trends Cell Biol. 1999;9:302–309. doi: 10.1016/s0962-8924(99)01606-2. [DOI] [PubMed] [Google Scholar]
  171. Matthews D.A. Adenovirus protein V induces redistribution of nucleolin and B23 from nucleolus to cytoplasm. J. Wrol. 2001;75:1031–1038. doi: 10.1128/JVI.75.2.1031-1038.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Maxwell E.S., Fournier M.J. The small nucleolar RNAs. Annu. Rev. Biochem. 1995;35:897–934. doi: 10.1146/annurev.bi.64.070195.004341. [DOI] [PubMed] [Google Scholar]
  173. McArthur C.A., Shackleford G.M. Npm3: A novel, widely expressed gene encoding a protein related to the molecular chaperones nucleplasmin and nucleophosmin. Genomics. 1997;42:137–140. doi: 10.1006/geno.1997.4353. [DOI] [PubMed] [Google Scholar]
  174. McDonald D., Hope T.J., Parslow T.G. Posttranscriptional regulation by the human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex proteins through a heterologous RNA binding site. J. Virol. 1992;66:7232–7238. doi: 10.1128/jvi.66.12.7232-7238.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Medina F.J., Cerdido A., Fernandez-Gomez M.E. Components of the nucleolar processing complex (Pre-rRNA, fibrillarin, and nucleolin) colocalize during mitosis and are incorporated to daughter cell nucleoli. Exp. Cell Res. 1995;221:111–125. doi: 10.1006/excr.1995.1358. [DOI] [PubMed] [Google Scholar]
  176. Meier U.T., Blobel G. NAP57, a mammalian nucleolar protein with a putative homolog in yeast and bacteria. J. Cell Biol. 1994;127:1505–1514. doi: 10.1083/jcb.127.6.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Mélese T., Xue Z. The nucleolus: An organelle formed by the act of building a ribosome. Curr. Opin. Cell Biol. 1995;7:319–324. doi: 10.1016/0955-0674(95)80085-9. [DOI] [PubMed] [Google Scholar]
  178. Michienzi A., Cagnon L., Bahner I., Rossi J.J. Vol. 97. 2000. Ribozyme-mediated inhibition of HIV 1 suggests nucleolar trafficking of HIV-1 RNA; pp. 8955–8960. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Milkereit P., Gadal O., Podtelejnikov A., Trumtel S., Gas N., Petfalski E., Tollervey D., Mann M., Hurt E., Tschochner H. Maturation and intranuclear transport of pre-ribosomes requires noc proteins. Cell. 2001;105:499–509. doi: 10.1016/s0092-8674(01)00358-0. [DOI] [PubMed] [Google Scholar]
  180. Mishra R.K., Eliceiri G.L. Vol. 94. 1997. Three small nucleolar RNAs that are involved in ribosomal RNA precursor processing; pp. 4972–4977. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Mitchell J.R., Cheng J., Collins K. A Box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol. Cell Biol. 1999;19:567–576. doi: 10.1128/mcb.19.1.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Mitchell J.R., Wood E., Collins K. A telomerase component defective in the human disease dyskeratosis congenita. Nature (London) 1999;402:551–555. doi: 10.1038/990141. [DOI] [PubMed] [Google Scholar]
  183. Mo Y.Y., Beck W.T. Association of human DNA topoisomerase 11 alpha with mitotic chromosomes in mammalian cells is independent of its catalytic activity. Exp. Cell Res. 1999;252:50–62. doi: 10.1006/excr.1999.4616. [DOI] [PubMed] [Google Scholar]
  184. Mohaghegh P., Hickson I.D. DNA helicase deficiencies associated with cancer predisposition and premature ageing disorders. Hum. Mol. Genet. 2001;10:741–746. doi: 10.1093/hmg/10.7.741. [DOI] [PubMed] [Google Scholar]
  185. Morris S.W., Kirstein M.N., Valentine M.B., Dittmer K.G., Shapiro D.N., Saltman D.L., Look A.T. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science. 1994;263:1281–1284. doi: 10.1126/science.8122112. [DOI] [PubMed] [Google Scholar]
  186. Mosgoeller W., Schofer C., Wesierska-Gadek J., Steiner M., Muller M., Wachtler E. Ribosomal gene transcription is organized in foci within nucleolar components. Histochem. Cell. Biol. 1998;109:111–118. doi: 10.1007/s004180050208. [DOI] [PubMed] [Google Scholar]
  187. Mougey E.B., O'Reilly M., Osheim Y., Miller O.L., Jr., Beyer A., Sollner-Webb B. The terminal balls characteristic of eukaryotic rRNA transcription units in chromatin spreads are rRNA processing complexes. Genes Dev. 1993;7:1609–1619. doi: 10.1101/gad.7.8.1609. [DOI] [PubMed] [Google Scholar]
  188. Moy T.I., Silver P.A. Nuclear export of the small ribosomal subunit requires the Ran-GTPasc cycle and certain nucleoporins. Genes Deu. 1999;13:2118–2133. doi: 10.1101/gad.13.16.2118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Nagel R., Ares M., Jr Substrate recognition by a eukaryotic RNase III: The doublestranded RNA-binding domain of Rntlp selectively binds RNA containing a 5′-AGNN-3′ tetraloop. RNA. 2000;6:1142–1156. doi: 10.1017/s1355838200000431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Narayanan A., Speckmann W., Terns R., Terns M.P. Role of the box C/D motif in localization of small nucleolar RNAs to coiled bodies and nucleoli. Mol. Biol. Cell. 1999;10:2131–2147. doi: 10.1091/mbc.10.7.2131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Narayanan A., Lukowiak A., Jady B.E., Dragon F., Kiss T., Terns R., Terns M.P. Nucleolar localization signals of box H/ACA small nucleolar RNAs. EMBO J. 1999;18:101–111. doi: 10.1093/emboj/18.18.5120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Neff N.F., Ellis N.A., Ye T.Z., Noonan J., Huang K., Sanz M., Proytcheva M. The DNA helicase activity of BLM is necessary for the correction of the genomic instability of bloom syndrome cells. Mol. Biol. Cell. 1999;10:665–676. doi: 10.1091/mbc.10.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. Newman D.R., Kuhn J.F., Shanab G.M., Maxwell E.S. Box C/D snoRNA-associated proteins: Two pairs of evolutionarily ancient proteins and possible links to replication and transcription. RNA. 2000;6:861–879. doi: 10.1017/s1355838200992446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Nicol S.M., Causevic M., Prescott A.R., Fuller-Pace F.V. The nuclear DEAD box RNA helicase p68 interacts with the nucleolar protein fibrillarin and colocalizes specifically in nascent nucleoli during telophase. Exp. Cell Res. 2000;257:272–280. doi: 10.1006/excr.2000.4886. [DOI] [PubMed] [Google Scholar]
  195. Nierras C.R., Liebman S.W., Warner J.R. Does Saccharomyces need an organized nucleolus? Chromosoma. 1997;105:444–451. [PubMed] [Google Scholar]
  196. Oakes M., Aris J.P., Brockenbrough J.S., Wai H., Vu L., Nomura M. Mutational analysis of the structure and localization of the nucleolus in the yeast Saccharomyces cerevisiae. J. Cell Biol. 1998;143:23–34. doi: 10.1083/jcb.143.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Ochs R., Lischwe M., O'Leary P., Busch H. Localization of nucleolar phosphoproteins B23 and C23 during mitosis. Exp. Cell. Res. 1983;146:139–149. doi: 10.1016/0014-4827(83)90332-4. [DOI] [PubMed] [Google Scholar]
  198. Ochs R.L., Lischwe M.A., Spohn W.H., Busch H. Fibrillarin: A new protein of the nucleolus identified by autoimmune sera. Biol. Cell. 1985;54:123–133. doi: 10.1111/j.1768-322x.1985.tb00387.x. [DOI] [PubMed] [Google Scholar]
  199. Ofengand J., Bakin A. Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. J. Mol. Biol. 1997;265:246–268. doi: 10.1006/jmbi.1996.0737. [DOI] [PubMed] [Google Scholar]
  200. Okuda M., Horn H.E., Tarapore P., Tokuyama Y., Smulian A.G., Chan P.K., Knudsen E.S., Hofmann I.A., Snyder J.D., Bove K.E., Fukasawa K. Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell. 2000;103:127–140. doi: 10.1016/s0092-8674(00)00093-3. [DOI] [PubMed] [Google Scholar]
  201. Okuwaki M., Matsumoto K., Tsujimoto M., Nagata K. Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone. FEBS Lett. 2001;506:272–276. doi: 10.1016/s0014-5793(01)02939-8. [DOI] [PubMed] [Google Scholar]
  202. Okuwaki M., Iwamatsu A., Tsujimoto M., Nagata K. Identification of nucleophosminB23, an acidic nucleolar protein, as a stimulatory factor for in vitro replication of adenovirus DNA complexed with viral basic core proteins. J. Mol. Biol. 2001;311:41–55. doi: 10.1006/jmbi.2001.4812. [DOI] [PubMed] [Google Scholar]
  203. Olson M.O.J. In: Strauss P.R., Wison S.H., editors. Vol. 2. Telford Press; West Caldwell, NJ: 1990. pp. 541–546. (The Eukaryotic Nucleus: Molecular Biochemistry and Macromolecular Assemblies). [Google Scholar]
  204. Olson M.0., Prestayko A.W., Jones C.F., Busch H. Phosphorylation of proteins of ribosomes and nucleolar preribosomal particles from Novikoff hepatoma ascites cells. J. Mol. Biol. 1974;90:161–168. doi: 10.1016/0022-2836(74)90264-2. [DOI] [PubMed] [Google Scholar]
  205. Olson M.O.J., Wallace M.O., Herrera A., Carlson-Marshall L., Hunt R.C. Preribosomal ribonucleoprotein particles are a major component of a nucleolar matrix fraction. Biochemistry. 1986;25:485–491. doi: 10.1021/bi00350a031. [DOI] [PubMed] [Google Scholar]
  206. Olson M.0., Dundr M., Szebeni A. The nucleolus: An old factory with unexpected capabilities. Trends Cell Biol. 2000;10:189–196. doi: 10.1016/s0962-8924(00)01738-4. [DOI] [PubMed] [Google Scholar]
  207. Orrick L.R., Olson M.0., Busch H. Vol. 70. 1973. Comparison of nucleolar proteins of normal rat liver and Novikoff hepatoma ascites cells by two-dimensional polyacrylamide gel electrophoresis; pp. 1316–1320. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Patterson S.D., Grossman J.S., D'Andrea P., Latter G.I. Reduced numatrin/ B23/nucleophosmin labeling in apoptotic Jurkat T lymphoblasts. J. Biol. Chem. 1995;270:9429–9436. doi: 10.1074/jbc.270.16.9429. [DOI] [PubMed] [Google Scholar]
  209. Paule M.R., White R.J. Survey and summary: Transcription by RNA polymerases I and III. Nucleic Acids Res. 2000;28:1283–1298. doi: 10.1093/nar/28.6.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Peculis B.A., Gall J.G. Localization of nucleolar protein N038 in amphibian oocytes. J. Cell Biol. 1992;116:1–14. doi: 10.1083/jcb.116.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Peculis B.A., Greer C.L. The structure of the ITS2-proximal stem is required for pre-rRNA processing in yeast. RNA. 1998;4:1610–1622. doi: 10.1017/s1355838298981420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Pederson T. Survey and summary. The plurifunctional nucleolus. Nucleic Acids Res. 1998;17:1871–1876. doi: 10.1093/nar/26.17.3871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  213. Peter M., Nakagawa J., Doree M., Labee J.C., Nigg E.A. Identification of major nucleolar proteins as candidate mitotic substrate of cdc2 kinase. Cell. 1990;60:791–801. doi: 10.1016/0092-8674(90)90093-t. [DOI] [PubMed] [Google Scholar]
  214. Pfeifle J., Anderer F.A., Franke M. Characterization of nucleolarproteins as autoantigens using human antiimmune sera. Ann. Rheum. Dis. 1986;45:978–986. doi: 10.1136/ard.45.12.978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Phair R.D., Misteli T. High mobility of proteins in the mammalian cell nucleus. Nature (London) 2000;404:604–605. doi: 10.1038/35007077. [DOI] [PubMed] [Google Scholar]
  216. Phillips B., Billin A.N., Cadwell C., Buchholz R., Erickson C., Merriam J.R., Carbon J., Poole S.J. The Nop60B gene of Drosophila encodes an essential nucleolar protein that functions in yeast. Mol. Gen. Genet. 1998;260:20–29. doi: 10.1007/s004380050866. [DOI] [PubMed] [Google Scholar]
  217. Pinol-Roma S. Association of nonribosomal nucleolar proteins in ribonucleoprotein complexes during interphase and mitosis. Mol. Biol. Cell. 1999;10:77–90. doi: 10.1091/mbc.10.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Pintard L., Kressler D., Lapeyre B. Spblp is a yeast nucleolar protein associated with Noplp and Nop58p that is able to bind S-adenosyl-L-methionine in vitro. Mol. Cell. Biol. 2000;20:1370–1381. doi: 10.1128/mcb.20.4.1370-1381.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Platani M., Goldberg I., Swedlow J.R., Lamond A.I. In vivo analysis of Cajal body movement, separation, and joining in live human cells. J. Cell Biol. 2000;151:1561–1574. doi: 10.1083/jcb.151.7.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  220. Pogacic V., Dragon F., Filipowicz W. Human H/ACA small nucleolar RNPs and telomerase share evolutionarily conserved proteins NHP2 and NOP10. Mol. Cell. Biol. 2000;20:9028–9040. doi: 10.1128/mcb.20.23.9028-9040.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Pokrywka N.J., Goldfarb D.S. Nuclear export pathways of tRNA and 40 S ribosomes include both common and specific intermediates. J. Biol. Chem. 1995;270:3619–3624. doi: 10.1074/jbc.270.8.3619. [DOI] [PubMed] [Google Scholar]
  222. Politz J.C., Yarovoi S., Kilroy S.M., Gowda K., Zwieb C., Pederson T. Vol. 97. 2000. Signal recognition particle components in the nucleolus; pp. 55–60. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Prestayko A.W., Klomp G.R., Schmoll D.J., Busch H. Comparison of proteins of ribosomal subunits and nucleolar preribosomal particles from Novikoff hepatoma ascites cells by two dimensional polyacrylamide gel electrophoresis. Biochemistry. 1974;13:1945–1951. doi: 10.1021/bi00706a026. [DOI] [PubMed] [Google Scholar]
  224. Ramakrishnan V., Moore P.B. Atomic structures at last: The ribosome in 2000. Curr. Opin. Stmct. Biol. 2001;11:144–154. doi: 10.1016/s0959-440x(00)00184-6. [DOI] [PubMed] [Google Scholar]
  225. Rasmussen T.P., Culbertson M.R. The putative nucleic acid helicase SenIp is required for formation and stability of termini and for maximal rates of synthesis and levels of accumulation of small nucleolar RNAs in Saccharomyces cerevisiae. Mol. Cell. Biol. 1998;18:6885–6896. doi: 10.1128/mcb.18.12.6885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Reeder R.H. Regulation of RNA polymerase I transcription in yeast and vertebrates. Prog. Nucleic Acid Res. Mol. Biol. 1999;62:293–327. doi: 10.1016/s0079-6603(08)60511-5. [DOI] [PubMed] [Google Scholar]
  227. Rizos H., Darmanian A.P., Mann G.J., Kefford R.E. Two arginine rich domains in the p 14ARF tumour suppressor mediate nucleolar localization. Oncogene. 2000;19:2978–2985. doi: 10.1038/sj.onc.1203629. [DOI] [PubMed] [Google Scholar]
  228. Samarsky D.A., Fournier M.J. A comprehensive database for the small nucleolar RNAs from Saccharomyces cerevisiae. Nucleic Acids Res. 1999;27:161–164. doi: 10.1093/nar/27.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Santoro R., Grummt I. Molecular mechanisms mediating methylation-dependent silencing of ribosomal gene transcription. Mol. Cell. 2001;8:719–725. doi: 10.1016/s1097-2765(01)00317-3. [DOI] [PubMed] [Google Scholar]
  230. Savino R., Gerbi S.A. In vivo disruption of Xenopus U3 snRNA affects ribosomal RNA processing. EMBO J. 1990;9:2299–2308. doi: 10.1002/j.1460-2075.1990.tb07401.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Savino T.M., Gebrane-Younes J., De Mey J., Sibarita J.B., Hernandez-Verdun D. Nucleolar assembly of the rRNA processing machinery in living cells. J. Cell Biol. 2001;153:1097–1110. doi: 10.1083/jcb.153.5.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  232. Savkur R.S., Olson M.O.J. Preferential cleavage in pre-ribosomal RNA by protein B23 endoribonuclease. Nucleic Acids Res. 1998;26:4508–4515. doi: 10.1093/nar/26.19.4508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  233. Scheer U., Hock R. Structure and function of the nucleolus. Curr. Opin. Cell Biol. 1999;11:385–390. doi: 10.1016/S0955-0674(99)80054-4. [DOI] [PubMed] [Google Scholar]
  234. Scheer U., Rose K.M. Vol. 81. 1984. Localization of RNA polymerase I in interphase cells and mitotic chromosomes by light and electron microscopic immunocytochemistry; pp. 1431–1435. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  235. Scheer U., Thiry M., Goessens G. Structure, function and assembly of the nucleolus. Trends Cell Biol. 1993;3:236–241. doi: 10.1016/0962-8924(93)90123-i. [DOI] [PubMed] [Google Scholar]
  236. Schmidt-Zachmann M.S., Franke W.W. DNA cloning and amino acid sequence determination of a major constituent protein of mammalian nucleoli. Chromosoma (Berl.) 1988;96:417–426. doi: 10.1007/BF00303035. [DOI] [PubMed] [Google Scholar]
  237. Schmidt-Zachmann M.S., Hugle-Dorr B., Franke W.W. A constitutive nucleolar protein identified as a member of the nucleoplasmin family. EMBO J. 1987;6:1881–1890. doi: 10.1002/j.1460-2075.1987.tb02447.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Schnapp A., Schnapp G., Erny B., Grummt I. Function of the growth-regulated transcription initiation factor TIF-IA in initiation complex formation at the murine ribosomal gene promoter. Mol. Cell. Biol. 1993;13:6723–6732. doi: 10.1128/mcb.13.11.6723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Schnapp G., Graveley B.R., Grummt I. TFIIS binds to mouse RNA polymerase I and stimulates transcript elongation and hydrolytic cleavage of nascent rRNA. Mol. Gen. Genet. 1996;252:412–419. doi: 10.1007/BF02173006. [DOI] [PubMed] [Google Scholar]
  240. Schneiter R., Kadowaki T., Tartakoff A.M. mRNA transport in yeast: Time to reinvestigate the functions of the nucleolus. Mol. Biol. Cell. 1995;6:357–370. doi: 10.1091/mbc.6.4.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Schultz M.C., Brill S.J., Ju Q., Sternglanz R., Reeder R.H. Topoisomerases and yeast rRNA transcription: Negative supercoiling stimulates initiation and topoisomerase activity is required for elongation. Genes Dev. 1992;6:1332–1341. doi: 10.1101/gad.6.7.1332. [DOI] [PubMed] [Google Scholar]
  242. Shiratori M., Sakamoto S., Suzuki N., Tokutake Y., Kawabe Y., Enomoto T., Sugimoto M., Goto M., Matsumoto T., Furuichi Y. Detection by epitope-defined monoclonal antibodies of Werner DNA helicases in the nucleoplasm and their upregulation by cell transformation and immortalization. J. Cell Biol. 1999;144:1–9. doi: 10.1083/jcb.144.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  243. Shore D. Vol. 97. 2000. The Sir2 protein family: A novel deacetylase for gene silencing and more; pp. 14030–14032. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  244. Shou W., Seol J.H., Shevchenko A., Baskerville C., Moazed D., Chen Z.W.S., Jang J., Shevchenko A., Charbonneau H., Deshaies R.J. Exit from mitosis is triggered by tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell. 1999;97:233–244. doi: 10.1016/s0092-8674(00)80733-3. [DOI] [PubMed] [Google Scholar]
  245. Sicard H., Faubladier M., Noaillac-Depeyre J., Leger-Silvestre I., Gas N., Caizergues-Ferrer M. The role of the Schizosaccharomyces pombe gar2 protein in nucleolar structure and function depends on the concerted action of its highly charged N terminus and its RNA-binding domains. Mol. Biol. Cell. 1998;9:2011–2023. doi: 10.1091/mbc.9.8.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  246. Sipos K., Olson M.O. Nucleotin promotes secondary structure in ribosomal RNA. Biochem. Biophys. Res. Commun. 1991;177:673–678. doi: 10.1016/0006-291x(91)91841-y. [DOI] [PubMed] [Google Scholar]
  247. Sleeman J.E., Lamond A.I. Newly assembled snRNPs associate first with coiled bodies then with speckles, suggesting a nuclear snRNP maturation pathway. Curr Biol. 1999;9:1–10. doi: 10.1016/s0960-9822(99)80475-8. [DOI] [PubMed] [Google Scholar]
  248. Snaar S., Wiesmeijer K., Jochemsen A.G., Tanke H.J., Dirks R.W. Mutational analysis of fibrillarin and its mobility in living human cells. J. Cell Biol. 2000;151:653–662. doi: 10.1083/jcb.151.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  249. Sollner-Webb B., Tycowski K.T., Steitz J.A. Ribosomal RNA processing in eukaryotes. In: Zimmerman R.A., Dahlberg A.E., editors. Ribosomal RNA: Structure Evolution, Gene Expression and Function in Protein Synthesis. CRC Press; Boca Raton, FL: 1996. pp. 469–490. [Google Scholar]
  250. Spector D.L., Ochs R.L., Busch H. Silver staining, immunofluorescence, and immunoelectron microscopic localization of nucleolar phosphoproteins B23 and C23. Chromosoma. 1984;90:139–148. doi: 10.1007/BF00292451. [DOI] [PubMed] [Google Scholar]
  251. Srivastava M., Pollard H.B. Molecular dissection of nucleolin's role in growth and cell proliferation: New insights. FASEB J. 1999;13:1911–1922. [PubMed] [Google Scholar]
  252. Stade K., Ford C.S., Guthrie C., Weis K. Exportin 1 (Cgmlp) is an essential nuclear export factor. Cell. 1997;90:1041–1050. doi: 10.1016/s0092-8674(00)80370-0. [DOI] [PubMed] [Google Scholar]
  253. Stage-Zimmerman T., Schmidt U., Silver P.A. Factors affecting nuclear export of the 60S ribosomal subunit in vivo. Mol. Biol. Cell. 2000;11:3777–3789. doi: 10.1091/mbc.11.11.3777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. Steitz J.A., Berg C., Hendrick J.E., La Branch, Metspalu A., Rinke J., Yario T. A 5S rRNA/L5 complex is a precursor to ribosome assembly in mammalian cells. J. Cell Biol. 1988;106:545–556. doi: 10.1083/jcb.106.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  255. Strohner R., Nemeth A., Jansa P., Hofmann-Rohrer U., Santoro R., Langst G., Grummt I. NoRC—a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J. 2001;20:4892–4900. doi: 10.1093/emboj/20.17.4892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  256. Sun J., McFarland M., Boetmer D., Panepinto J., Rhodes J.C., Askew D.S. Cgr1p, a novel nucleolar protein encoded by Saccharomyces cerevisiae orf YGL0292w. Curr. Microbiol. 2001;42:65–69. doi: 10.1007/s002840010180. [DOI] [PubMed] [Google Scholar]
  257. Suzuki T., Shiratori M., Furuichi Y., Matsumoto T. Diverged nuclear localization of Werner helicase in human and mouse cells. Oncogene. 2001;20:2551–2558. doi: 10.1038/sj.onc.1204344. [DOI] [PubMed] [Google Scholar]
  258. Szebeni A., Olson M.O. Nucleolar protein B23 has molecular chaperone activities. Protein Sci. 1999;8:905–912. doi: 10.1110/ps.8.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  259. Szebeni A., Herrera J.E., Olson M.O.J. Interaction of nucleolar protein B23 with peptides related to nuclear localization signals. Biochemistry. 1995;34:8037–8042. doi: 10.1021/bi00025a009. [DOI] [PubMed] [Google Scholar]
  260. Szebeni A., Mehrotra B., Baumann A., Adam S.A., Wingfield P.T., Olson M.O.J. Nucleolar protein B23 stimulates nuclear import of the HIV-1 Rev protein and NLS-conjugated albumin. Biochemistry. 1997;36:3941–3949. doi: 10.1021/bi9627931. [DOI] [PubMed] [Google Scholar]
  261. Szekely A.M., Chen Y.H., Zhang C.Y., Oshima J., Weissman S.M. Vol. 97. 2000. Werner protein recruits DNA polymerase to the nucleolus; pp. 11365–11370. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  262. Takemura M., Ohta N., Furuichi Y., Takahashi T., Yoshida S., Olson M.O., Umekawa H. Stimulation of calf thymus DNA polymerase alpha activity by nucleolar protein B23. Biochem. Biophys. Res. Commun. 1994;199:46–51. doi: 10.1006/bbrc.1994.1191. [DOI] [PubMed] [Google Scholar]
  263. Tanner K.G., Landry J., Sternglanz R., Deno J.M. Vol. 97. 2000. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-0-acetyl-ADP-ribose; pp. 14178–14182. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  264. Tawfic S., Olson M.O., Ahmed K. Role of protein phosphorylation in post-translational regulation of protein B23 during programmed cell death in the prostate gland. J. Biol. Chem. 1995;270:21009–21015. doi: 10.1074/jbc.270.36.21009. [DOI] [PubMed] [Google Scholar]
  265. Thiry M., Goessens G. R. G. Landes Company; Austin, TX: 1996. The Nucleolus during the Cell Cycle. [Google Scholar]
  266. Thiry M., Cheutin T., O'Donohue M.F., Kaplan H., Ploton D. Dynamics and three-dimensional localization of ribosomal RNA within the nucleolus. RNA. 2000;6:1750–1761. doi: 10.1017/s1355838200001564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  267. Tokuyama Y., Horn H.E., Kawamura K., Tarapore E., Fukasawa K. Specific phosphorylation of nucleophosmin on Thr(199) by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J. Biol. Chem. 2001;276:21529–21537. doi: 10.1074/jbc.M100014200. [DOI] [PubMed] [Google Scholar]
  268. Tolerico L.H., Benko A.L., Aris J.P., Stanford D.R., Martin N.C., Hopper A.K. Saccharomyces cerevisiae Mod5p-II contains sequences antagonistic for nuclear and cytosolic locations. Genetics. 1999;151:57–75. doi: 10.1093/genetics/151.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  269. Tollervey D., Kiss T. Function and synthesis of small nucleolar RNAs. Curr Opin. Cell Biol. 1997;9:337–342. doi: 10.1016/s0955-0674(97)80005-1. [DOI] [PubMed] [Google Scholar]
  270. Tollervey D., Lehtonen H., Jansen R., Kern H., Hurt E.C. Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell. 1993;72:443–457. doi: 10.1016/0092-8674(93)90120-f. [DOI] [PubMed] [Google Scholar]
  271. Tsutsui K., Tsutsui K., Hosoya O., Sano K., Tokunaga A. Immunohistochemical analyses of DNA topoisomerase II isoforms in developing rat cerebellum. J. Neurol. 2001;431:228–239. doi: 10.1002/1096-9861(20010305)431:2<228::aid-cne1067>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
  272. Tuteja R., Tuteja N. Nucleolin: A multifunctional major nucleolar phosphoprotein. Crit. Rev. Biochem. Mol. Biol. 1998;33:407–436. doi: 10.1080/10409239891204260. [DOI] [PubMed] [Google Scholar]
  273. Tuteja N., Beven A.F., Shaw P.J., Tuteja R. A pea homologue of human DNA helicase I is localized within the dense fibrillar component of the nucleolus and stimulated by phosphorylation with CK2 and cdc2 protein kinases. Plant J. 2001;25:9–17. doi: 10.1046/j.1365-313x.2001.00918.x. [DOI] [PubMed] [Google Scholar]
  274. Umekawa H., Chang J.H., Correia J.J., Wang D., Wingfield P.T., Olson M.O.J. Nucleolar protein B23: Bacterial expression, purification, oligomerization and secondary structure of two isoforms. Cell. Mol. Biol. Res. 1993;39:635–645. [PubMed] [Google Scholar]
  275. Umekawa H., Sato K., Takemura M., Watanabe Y., Usui S., Takahashi T., Yoshida S., Olson M.O., Furuichi Y. The carboxyl terminal sequence of nucleolar protein B23.1 is important in its DNA polymerase alpha-stimulatory activity. J. Biochem. (Tokyo) 2001;130:199–205. doi: 10.1093/oxfordjournals.jbchem.a002973. [DOI] [PubMed] [Google Scholar]
  276. Valdez B.C., Perlaky L., Henning D., Saijo Y., Chan P.K., Busch H. Identification of the nuclear and nucleolar localization signals of the protein p120. Interaction with translocation protein B23. J. Biol. Chem. 1994;269:23776–23783. [PubMed] [Google Scholar]
  277. Valentin G. Repertorium Anat. Physiol. 1839;4:269. [Google Scholar]
  278. Vandelaer M., Thiry M. The phosphoprotein pp135 is an essential constituent of the fibrillar components of nucleoli and of coiled bodies. Histochem. Cell Biol. 1998;110:169–177. doi: 10.1007/s004180050278. [DOI] [PubMed] [Google Scholar]
  279. Van Hoof A., Lennertz P., Parker R. Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast. EMBO J. 2000;19:1357–1365. doi: 10.1093/emboj/19.6.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  280. Vargas-Roig L.M., Gago F.E., Tello O., Aznar J.C., Ciocca D.R. Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int. J. Cancer. 1998;79:468–475. doi: 10.1002/(sici)1097-0215(19981023)79:5<468::aid-ijc4>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  281. Vaziri H., Dessain S.K., Eaton E.N., Imai S.I., Frye R.A., Pandita T.K., Guarente L., Weinberg R.A. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107:149–159. doi: 10.1016/s0092-8674(01)00527-x. [DOI] [PubMed] [Google Scholar]
  282. Verheggen C., LePause S., Almouzni G., Hernandez-Verdun D. Presence of pre-rRNAs before activation of polymerase I transcription in the building process of nucleoli during early development of Xenopus laevis. J. Cell Biol. 1998;142:1167–1180. doi: 10.1083/jcb.142.5.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  283. Verheggen C., Mouaikel J., Thiry M., Blanchard J.M., Tollervey D., Bordonne R., Lafontaine D.L., Bertrand E. Box C/D small nucleolar RNA trafficking involves small nucleolar RNP proteins, nucleolar factors and a novel nuclear domain. EMBO J. 2001;20:5480–5490. doi: 10.1093/emboj/20.19.5480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  284. Visintin R., Hwang E.S., Amon A. Cfi 1 prevents premature exit from mitosis by anchoring Cdc 14 phosphatase in the nucleolus. Nature (London) 1999;398:818–823. doi: 10.1038/19775. [DOI] [PubMed] [Google Scholar]
  285. Voit R., Schnapp A., Kuhn A., Rosenbauer H., Hirschmann P., Stunnenberg H.G., Grummt I. The nucleolar transcription factor mUBF is phosphorylated by casein kinase II in the C-terminal hyperacidic tail which is essential for transactivation. EMBO J. 1992;11:2211–2218. doi: 10.1002/j.1460-2075.1992.tb05280.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  286. Voit R., Hoffmann M., Grummt I. Phosphorylation by Gi-specific cdk-cyclin complexes activates the nucleolar transcription factor UBF. EMBO J. 1999;18:1891–1899. doi: 10.1093/emboj/18.7.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  287. Wachtler F., Schwarzacher H.G., Smetana K. On the fusion of nucleoli in interphase. Eur. J. Cell Biol. 1984;34:190–192. [PubMed] [Google Scholar]
  288. Wagner R. Einige bemerkungen and fragen fiber das keimblaschen (vesicula germinativa) Müller's Arch. Anat. Physiol. U Wiss. Med. 1835:268. [Google Scholar]
  289. Wai H.H., Vu L., Oakes M., Nomura M. Complete deletion of yeast chromosomal rDNA repeats and integration of a new rDNA repeat: Use of rDNA deletion strains for functional analysis of rDNA promoter elements in vivo. Nucleic Acids Res. 2000;28:3524–3534. doi: 10.1093/nar/28.18.3524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  290. Wang D., Baumann A., Szebeni A., Olson M.O.J. The nucleic acid binding activity of nucleolar protein B23.1 resides in its carboxy-terminal end. J. Biol. Chem. 1994;269:30994–30998. [PubMed] [Google Scholar]
  291. Wang H., Boisvert D., Kim K.K., Kim R., Kim S.H. Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 A resolution. EMBO J. 2000;19:317–323. doi: 10.1093/emboj/19.3.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  292. Wang Y., Guan J., Wang H., Wang Y., Leeper D., Iliakis G. Regulation of dna replication after heat shock by replication protein a-nucleolin interactions. J. Biol. Chem. 2001;276:20579–20588. doi: 10.1074/jbc.M100874200. [DOI] [PubMed] [Google Scholar]
  293. Watkins N.J., Gottschalk A., Neubauer G., Kastner B., Fabrizio P., Mann M., Luhrmann R. Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Garlp in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA. 1998;4:1549–1568. doi: 10.1017/s1355838298980761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  294. Weinstein L.B., Steitz J.A. Guided tours: From precursor snoRNA to functional snoRNP. Curr. Opin. Cell Biol. 1999;11:378–384. doi: 10.1016/S0955-0674(99)80053-2. [DOI] [PubMed] [Google Scholar]
  295. Weiserska-Gadek J., Penner E., Hitchman E., Kier P., Sauermann G. Nucleolar proteins B23 and C23 as target antigens in chronic graft-versus-host disease. Blood. 1992;79:1081–1086. [PubMed] [Google Scholar]
  296. Wiederkehr T., Pretot R.F., Minvielle-Sebastia L. Synthetic lethal interactions with conditional poly(A) polymerase alleles identify LCP5, a gene involved in 188 rRNA maturation. RNA. 1998;4:1357–1372. doi: 10.1017/s1355838298980955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  297. Wingfield P.T., Stahl S.J., Payton M.A., Venkatesan S., Misra M., Steven A.C. HIV-1 Rev expressed in recombinant E. coli: Purification, polymerization, and conformational properties. Biochemistry. 1991;30:7527–7534. doi: 10.1021/bi00244a023. [DOI] [PubMed] [Google Scholar]
  298. Wolffe A.P., Hansen J.C. Nuclear visions: Functional flexibility from structural instability. Cell. 2001;104:631–634. doi: 10.1016/s0092-8674(02)01453-8. [DOI] [PubMed] [Google Scholar]
  299. Wolin S.L., Matera A.G. The trials and travels of tRNA. Genes Dev. 1999;13:1–10. doi: 10.1101/gad.13.1.1. [DOI] [PubMed] [Google Scholar]
  300. Yamada H., Jiang Y.M., Zhu H.Y., Inagaki-Ohara K., Nishiyama Y. Nucleolar localization of the UL3 protein of herpes simplex virus type 2. J. Gen. Virol. 1999;80:2157–2164. doi: 10.1099/0022-1317-80-8-2157. [DOI] [PubMed] [Google Scholar]
  301. Yang T.H., Tsai W.H., Lee Y.M., Lei H.Y., Lai M.Y., Chen D.S., Yeh N.H., Lee S.C. Purification and characterization of nucleolin and its identification as a transcription repressor. Mol. Cell. Biol. 1994;14:6068–6074. doi: 10.1128/mcb.14.9.6068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  302. Yang Y., Isaac C., Wang C., Dragon F., Pogacic V., Meier U.T. Conserved composition of mammalian box H/ACA and box C/D small nucleolar ribonucleoprotein particles and their interaction with the common factor Nopp 140. Mol. Biol. Cell. 2000;11:567–577. doi: 10.1091/mbc.11.2.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  303. Yankiwski V., Marciniak R.A., Guarente L., Neff N.F. Vol. 97. 2000. Nuclear structure in normal and Bloom syndrome cells; pp. 5214–5219. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  304. Yu C.E., Oshima J., Wijsman E.M., Nakura J., Miki T., Piussan C., Matthews S., Fu Y.H., Mulligan J., Martin G.M., Schellenberg G.D. Mutations in the consensus helicase domains of the Werner syndrome gene. Werner's Syndrome Collaborative Group. Am. J. Hum. Genet. 1997;60:330–341. [PMC free article] [PubMed] [Google Scholar]
  305. Yung B.Y.M., Chan P.K. Identification and characterization of a hexameric form of nucleolar phosphoprotein B23. Biochim. Biophys. Acta. 1987;925:74–82. doi: 10.1016/0304-4165(87)90149-8. [DOI] [PubMed] [Google Scholar]
  306. Yung B.Y.M., Busch R.K., Busch H., Mauger A.B., Chan P.K. Effects of actinomycin D analogs on nucleolar phosphoprotein B23 (37,000 daltons/pI 5.1) Biochem. Pharmacol. 1985;34:4059–4063. doi: 10.1016/0006-2952(85)90387-9. [DOI] [PubMed] [Google Scholar]
  307. Yung B.Y.M., Busch H., Chan P.K. Translocation of nucleolar phosphoprotein B23 (37 kDa/ pI 5.1) induced by selective inhibitors of ribosome synthesis. Biochim. Biophys. Acta. 1985;826:167–173. doi: 10.1016/0167-4781(85)90002-8. [DOI] [PubMed] [Google Scholar]
  308. Yung B.Y.M., Busch H., Chan P.K. Effect of luzopeptins on protein B23 translocation and ribosomal RNA synthesis in HeLa cells. Cancer Res. 1986;46:922–925. [PubMed] [Google Scholar]
  309. Yung B.Y.M., Bor A.M.S., Chan P.K. Short exposure to actinomycin D induces “reversible” translocation of protein B23 as well as “reversible” inhibition of cell growth and RNA synthesis in HeLa cells. Cancer Res. 1990;50:5987–5991. [PubMed] [Google Scholar]
  310. Zanchin N.I., Goldfarb D.S. Nip7p interacts with Nop8p, an essential nucleolar protein required for 60S ribosome biogenesis, and the exosome subunit Rrp43p. Mol. Cell. Biol. 1999;19:1518–1525. doi: 10.1128/mcb.19.2.1518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  311. Zatsepina O.V., Todorov I.T., Philipova R.N., Krachmarov C.P., Trendelenburg M.F., Jordan E.G. Cell cycle-dependent translocations of a major nucleolar phosphoprotein, B23, and some characteristics of its variants. Eur. J. Cell Biol. 1997;73:58–70. [PubMed] [Google Scholar]
  312. Zatsepina O.V., Rousselet A., Chan P.K., Olson M.O.J., Jordan E.G., Bornens M. The nucleolar phosphoprotein B23 redistributes in part to the spindle poles during mitosis. J. Cell Sci. 1999;112:455–466. doi: 10.1242/jcs.112.4.455. [DOI] [PubMed] [Google Scholar]
  313. Zhai W.G., Comai L. Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol. Cell. Biol. 2000;20:5930–5938. doi: 10.1128/mcb.20.16.5930-5938.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  314. Zhang S., Herrmann C., Grosse F. Nucleolar localization of murine nuclear DNA helicase II (RNA helicase A) J. Cell Sci. 1999;112:2693–2703. doi: 10.1242/jcs.112.16.2693. [DOI] [PubMed] [Google Scholar]
  315. Zhang Y., Xiong Y. Control of p53 ubiquitination and nuclear export by MDM2 and ARF. Cell Growth Differ. 2001;12:175–186. [PubMed] [Google Scholar]
  316. Zirwes R.F., Kouzmenko A.P., Peters J.M., Franke W.W., Schmidt-Zachmann M.S. Topogenesis of a nucleolar protein: Determination of molecular segments directing nucleolar association. Mol. Biol. Cell. 1997;8:231–248. doi: 10.1091/mbc.8.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  317. Zirwes R.F., Schmidt-Zachmann M.S., Franke W.W. Vol. 94. 1997. Identification of a small, very acidic constitutive protein (N029) as a member of the nucleoplasmin family; pp. 11387–11392. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  318. Zirwes R.F., Eilbracht J., Kneissel S., Schmidt-Zachmann M.S. A novel helicase-type protein in the nucleolus: Protein NOH61. Mol. Biol. Cell. 2000;11:1153–1167. doi: 10.1091/mbc.11.4.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  319. Zolotukhin A.S., Felber B.K. Nucleoporins Nup98 and Nup214 participate in nuclear export of human immunodeficiency virus type 1 Rev. J. Virol. 1999;73:120–127. doi: 10.1128/jvi.73.1.120-127.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from International Review of Cytology are provided here courtesy of Elsevier

RESOURCES