Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jan 7;79:1–53. doi: 10.1016/S0065-2776(01)79001-3

Neutralizing antiviral antibody responses

Rolf M Zinkernagel 1,1, Alain Lamarre 1,1, Adrian Ciurea 1, Lukas Hunziker 1, Adrian F Ochsenbein 1, Kathy D Mccoy 1, Thomas Fehr 1, Martin F Bachmann 1, Ulrich Kalinke 1, Hans Hengartner 1
PMCID: PMC7130890  PMID: 11680006

Publisher Summary

Neutralizing antibodies are evolutionarily important effectors of immunity against viruses. Their evaluation has revealed a number of basic insights into specificity, rules of reactivity (tolerance), and memory—namely, (1) Specificity of neutralizing antibodies is defined by their capacity to distinguish between virus serotypes; (2) B cell reactivity is determined by antigen structure, concentration, and time of availability in secondary lymphoid organs; and (3) B cell memory is provided by elevated protective antibody titers in serum that are depending on antigen stimulation. These perhaps slightly overstated rules are simple, correlate with in vivo evidence as well as clinical observations, and appear to largely demystify many speculations about antibodies and B cell physiology. The chapter also considers successful vaccines and compares them with those infectious diseases where efficient protective vaccines are lacking, it is striking to note that all successful vaccines induce high levels of neutralizing antibodies (nAbs) that are both necessary and sufficient to protect the host from disease. Successful vaccination against infectious diseases such as tuberculosis, leprosy, or HIV would require induction of additional long-lasting T cell responses to control infection.

References

  1. Acha-Orbea H., Palmer E. Mls—a retrovirus exploits the immune system. Immunol. Today. 1991;12:356–361. doi: 10.1016/0167-5699(91)90066-3. [DOI] [PubMed] [Google Scholar]
  2. Ada G. HIV and pandemic influenza virus: two great infectious disease challenges. Virology. 2000;268:227–230. doi: 10.1006/viro.2000.0207. [DOI] [PubMed] [Google Scholar]
  3. Ahearn J.M., Fischer M.B., Croix D., Goerg S., Ma M., Xia J., Zhou X., Howard R.G., Rothstein T.L., Carroll M.C. Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen. Immunity. 1996;4:251–262. doi: 10.1016/s1074-7613(00)80433-1. [DOI] [PubMed] [Google Scholar]
  4. Ahmed R. Immunological memory against viruses. Semin. Immunol. 1992;4:105–109. [PubMed] [Google Scholar]
  5. Ahmed R., Gray D. Immunological memory and protective immunity: understanding their relation. Science. 1996;272:54–60. doi: 10.1126/science.272.5258.54. [DOI] [PubMed] [Google Scholar]
  6. Aichele P., Brduscha-Riem K., Oehen S., Odermatt B., Zinkernagel R.M., Hengartner H., Pircher H.P. Peptide antigen treatment of naive and virus-immune mice: antigen-specific tolerance versus immunopathology. Immunity. 1997;6:519–529. doi: 10.1016/s1074-7613(00)80340-4. [DOI] [PubMed] [Google Scholar]
  7. Albert J., Abrahamsson B., Nagy K., Aurelius E., Gaines H., Nystrom G., Fenyo E.M. Rapid development of isolate-specific neutralizing antibodies after primary HIV-1 infection and consequent emergence of virus variants which resist neutralization by autologous sera. AIDS. 1990;4:107–112. doi: 10.1097/00002030-199002000-00002. [DOI] [PubMed] [Google Scholar]
  8. Alberti A., Cavalletto D., Pontisso P., Chemello L., Tagariello G., Belussi F. Antibody response to pre-S2 and hepatitis B virus induced liver damage. Lancet. 1988;1:1421–1424. doi: 10.1016/s0140-6736(88)92237-4. [DOI] [PubMed] [Google Scholar]
  9. Althage A., Odermatt B., Moskophidis D., Kündig T.M., Hoffman Rohrer U., Hengartner H., Zinkernagel R.M. Immunosuppression by lymphocytic choriomeningitis virus infection: competent effector T and B cells but impaired antigen presentation. Eur. J. Immunol. 1992;22:1803–1812. doi: 10.1002/eji.1830220720. [DOI] [PubMed] [Google Scholar]
  10. Amlot P.L., Grennan D., Humphrey J.H. Splenic dependence of the antibody response to thymus-independent (TI-2) antigens. Eur. J. Immunol. 1985;15:508–512. doi: 10.1002/eji.1830150516. [DOI] [PubMed] [Google Scholar]
  11. Arendrup M., Nielsen C., Hansen J.E., Pedersen C., Mathiesen L., Nielsen J.O. Autologous HIV-1 neutralizing antibodies: emergence of neutralization-resistant escape virus and subsequent development of escape virus neutralizing antibodies. J. AIDS. 1992;5:303–307. [PubMed] [Google Scholar]
  12. Arya S.C. Human immunization in developing countries: practical and theoretical problems and prospects. Vaccine. 1994;12:1423–1435. doi: 10.1016/0264-410x(94)90152-x. [DOI] [PubMed] [Google Scholar]
  13. Avrameas S. Natural autoantibodies: from ‘horror autotoxicus’ to ‘gnothi seauton’. Immunol. Today. 1991;12:154–159. doi: 10.1016/S0167-5699(05)80045-3. [DOI] [PubMed] [Google Scholar]
  14. Baba T.W., Liska V., Hofmann-Lehmann R., Vlasak J., Xu W., Ayehunie S., Cavacini L.A., Posnar M.R., Katinger H., Stiegler G., Bernacky B.J., Rizvi T.A., Schmidt R., Hill L.R., Keeling M.E., Lu Y., Wright J.E., Chon T.C., Ruprecht R.M. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat. Med. 2000;6:200–206. doi: 10.1038/72309. [DOI] [PubMed] [Google Scholar]
  15. Bachmann M.F., Zinkernagel R.M. The influence of virus structure on antibody responses and virus serotype formation. Immunol. Today. 1996;12:553–558. doi: 10.1016/s0167-5699(96)10066-9. [DOI] [PubMed] [Google Scholar]
  16. Bachmann M.F., Zinkernagel R.M. Neutralizing antiviral B cell responses. Annu. Rev. Immunol. 1997;15:235–270. doi: 10.1146/annurev.immunol.15.1.235. [DOI] [PubMed] [Google Scholar]; Bachmann M.F., Zinkernagel R.M. Neutralizing antiviral B cell responses. Annu. Rev. Immunol. 1997;15:235–270. doi: 10.1146/annurev.immunol.15.1.235. [DOI] [PubMed] [Google Scholar]
  17. Bachmann M.F., Rohrer U.H., Kündig T.M., Bürki K., Hengartner H., Zinkernagel R.M. The influence of antigen organization on B cell responsiveness. Science. 1993;262:1448–1451. doi: 10.1126/science.8248784. [DOI] [PubMed] [Google Scholar]
  18. Bachmann M.F., Kündig T.M., Hengartner H., Zinkernagel R.M. Regulation of IgG antibody titers by the amount persisting of immune-complexed antigen. Eur. J. Immunol. 1994;24:2567–2570. doi: 10.1002/eji.1830241046. [DOI] [PubMed] [Google Scholar]
  19. Bachmann M.F., Kündig T.M., Kalberer C.P., Hengartner H., Zinkernagel R.M. How many specific B cells are needed to protect against a virus? J. Immunol. 1994;152:4235–4241. [PubMed] [Google Scholar]
  20. Bachmann M.F., Kündig T.M., Odermatt B., Hengartner H., Zinkernagel R.M. Free recirculation of memory B cells versus antigen-dependent differentiation to antibody-forming cells. J. Immunol. 1994;153:3386–3397. [PubMed] [Google Scholar]
  21. Bachmann M.F., Hengartner H., Zinkernagel R.M. Thelper cell-independent neutralizing B cell response against vesicular stomatitis virus: role of antigen patterns in B cell induction? Eur. J. Immunol. 1995;25:3445–3451. doi: 10.1002/eji.1830251236. [DOI] [PubMed] [Google Scholar]
  22. Bachmann M.F., Fehr T., Freer G., Hengartner H., Zinkernagel R.M. Correlation of tolerogenicity of a viral antigen with its immunogenicity. J. Immunol. 1997;158:5106–5111. [PubMed] [Google Scholar]
  23. Bachmann M.F., Kalinke U., Althage A., Freer G., Burkhart C., Roost H., Aguet M., Hengartner H., Zinkernagel R.M. The role of antibody concentration and avidity in antiviral protection. Science. 1997;276:2024–2027. doi: 10.1126/science.276.5321.2024. [DOI] [PubMed] [Google Scholar]
  24. Bachmann M.F., Kündig T.M., Hengartner H., Zinkernagel R.M. Vol. 94. 1997. Protection against immunopathological consequences of a viral infection by activated but not resting cytotoxic T cells: T cell memory without “memory T cells”? pp. 640–645. (Proc. Natl. Acad. Sci. USA.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Bachmann M.F., Ecabert B., Kopf M. Influenza virus: a novel method to assess viral and neutralizing antibody titers in vitro. J. Immunol. Methods. 1999;225:105–111. doi: 10.1016/s0022-1759(99)00034-4. [DOI] [PubMed] [Google Scholar]
  26. Baer G.M., Cleary W.F. A model in mice for the pathogenesis and treatment of rabies. J. Infect. Dis. 1972;125:520–527. doi: 10.1093/infdis/125.5.520. [DOI] [PubMed] [Google Scholar]
  27. Baldridge J.R., Buchmeier M.J. Mechanisms of antibody-mediated protection against lymphocytic choriomeningitis virus infection: mother-to-baby transfer of humoral protection. J. Virol. 1992;66:4252–4257. doi: 10.1128/jvi.66.7.4252-4257.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Baldridge J.R., McGraw T.S., Paoletti A., Buchmeier M.J. Antibody prevents the establishment of persistent arenavirus infection in synergy with endogenous T cells. J. Virol. 1997;71:755–758. doi: 10.1128/jvi.71.1.755-758.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Basten A., Brink R., Peake P., Adams E., Crosbie J., Hartley S., Goodnow C.C. Self tolerance in the B-cell repertoire. Immunol. Rev. 1991;122:5–19. doi: 10.1111/j.1600-065x.1991.tb00593.x. [DOI] [PubMed] [Google Scholar]
  30. Battegay M., Kyburz D., Hengartner H., Zinkernagel R.M. Enhancement of disease by neutralizing antiviral antibodies in the absence of primed antiviral cytotoxic T cells. Eur. J. Immunol. 1993;23:3236–3241. doi: 10.1002/eji.1830231229. [DOI] [PubMed] [Google Scholar]
  31. Battegay M., Moskophidis D., Waldner H., Brundler M.A., Fung-Leung W.-P., Mak T.W., Hengartner H., Zinkernagel R.M. Impairment and delay of neutralizing antiviral antibody responses by virus-specific cytotoxic T cells. J. Immunol. 1993;151:5408–5415. [PubMed] [Google Scholar]
  32. Battegay M., Moskophidis D., Rahemtulla A., Hengartner H., Mak T.W., Zinkernagel R.M. Enhanced establishment of a virus carrier state in adult CD4 T-cell-deficient mice. J. Virol. 1994;68:4700–4704. doi: 10.1128/jvi.68.7.4700-4704.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Baumgarth N. A two-phase model of B-cell activation. Immunol. Rev. 2000;176:171–180. doi: 10.1034/j.1600-065x.2000.00606.x. [DOI] [PubMed] [Google Scholar]
  34. Baumgarth N., Herman O.C., Jager G.C., Brown L.E., Herzenberg L.A., Chen J. B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J. Exp. Med. 2000;192:271–280. doi: 10.1084/jem.192.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Beebe D.P., Cooper N.R. Neutralization of vesicular stomatitis virus (VSV) by human complement requires a natural IgM antibody present in human serum. J. Immunol. 1981;126:1562–1568. [PubMed] [Google Scholar]
  36. Bennett J.V., Cutts F.T., Katz S.L. Edmonston-Zagreb measles vaccine: a good vaccine with an image problem. Pediatrics. 1999;104:1123–1124. doi: 10.1542/peds.104.5.1123. [DOI] [PubMed] [Google Scholar]
  37. Berry D.M., Almeida J.D. The morphological and biological effects of various antisera on avian infectious bronchitis virus. J. Gen. Virol. 1968;3:97–102. doi: 10.1099/0022-1317-3-1-97. [DOI] [PubMed] [Google Scholar]
  38. Bianchi L. The immunopathology of acute type B hepatitis. Springer Semin. Immunopathol. 1981;3:421–438. doi: 10.1007/BF01951491. [DOI] [PubMed] [Google Scholar]
  39. Biberfeld P., Porwit-Ksiazek A., Bottiger B., Morfeldt-Mansson L., Biberfeld G. Immunohistopathology of lymph nodes in HTLV-III infected homosexuals with persistent adenopathy or AIDS. Cancer Res. 1985;45:4665s–4670s. [PubMed] [Google Scholar]
  40. Billeter M.A., Cattaneo R., Spielhofer P., Kaelin K., Huber M., Schmid A., Baczko K., ter Meulen V. Generation and properties of measles virus mutations typically associated with subacute sclerosing panencephalitis. Ann N.Y. Acad. Sci. 1994;724:367–377. doi: 10.1111/j.1749-6632.1994.tb38934.x. [DOI] [PubMed] [Google Scholar]
  41. Binder D., Fehr J., Hengartner H., Zinkernagel R.M. Virus-induced transient bone marrow aplasia: major role of interferon-alpha/beta during acute infection with the noncytopathic lymphocytic choriomeningitis virus. J. Exp. Med. 1997;185:517–530. doi: 10.1084/jem.185.3.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Bittle J.L., Houghten R.A., Alexander H., Shinnick T.M., Sutcliffe J.G., Lerner R.A., Rowlands D.J., Brown F. Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. Nature. 1982;298:30–33. doi: 10.1038/298030a0. [DOI] [PubMed] [Google Scholar]
  43. Bloom B., Ahmed R. Immunity to infection. Curr. Opin. Immunol. 1998;10:419–421. doi: 10.1016/s0952-7915(98)80115-5. [DOI] [PubMed] [Google Scholar]
  44. Bloom B.R., McKinney J.D. The death and resurrection of tuberculosis. Nat. Med. 1999;5:872–874. doi: 10.1038/11309. [DOI] [PubMed] [Google Scholar]
  45. Boes M., Esau C., Fischer M.B., Schmidt T., Carroll M., Chen J. Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J. Immunol. 1998;160:4776–4787. [PubMed] [Google Scholar]
  46. Boes M., Prodeus A.P., Schmidt T., Carroll M.C., Chen J. A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection. J. Exp. Med. 1998;188:2381–2386. doi: 10.1084/jem.188.12.2381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Booth J.C.L., Kumar U., Webster D., Monjardino J., Thomas H.C. Comparison of the rate of sequence variation in the hypervariable region of E2/NS1 region of hepatitis C virus in normal and hypogammaglobulinemic patients. Hepatology. 1998;26:223–227. doi: 10.1002/hep.510270134. [DOI] [PubMed] [Google Scholar]
  48. Booy R., Aitken S.J., Taylor S., Tudor-Williams G., Macfarlane J.A., Moxon E.R., Ashworth L.A., Mayon-White R.T., Griffiths H., Chapel H.M. Immunogenicity of combined diphtheria, tetanus, and pertussis vaccine given at 2, 3, and 4 months versus 3, 5, and 9 months of age. Lancet. 1992;339:507–510. doi: 10.1016/0140-6736(92)90336-2. [DOI] [PubMed] [Google Scholar]
  49. Borrego B., Novella I.S., Giralt E., Andreu D., Domingo E. Distinct repertoire of antigenic variants of foot-and-mouth disease virus in the presence or absence of immune selection. J. Virol. 2000;67:6071–6079. doi: 10.1128/jvi.67.10.6071-6079.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Borrow P., Evans C.F., Oldstone M.B. Virus-induced immunosuppression: immune system-mediated destruction of virus-infected dendritic cells results in generalized immune suppression. J Virol. 1995;69:1059–1070. doi: 10.1128/jvi.69.2.1059-1070.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Bos N.A., Meeuwsen C.G. B cell repertoire in adult antigen-free and conventional neonatal BALB/c mice. I. Preferential utilisation of the CH-proximal VH gene family PC7183. Eur. J. Immunol. 1989;19:1811–1815. doi: 10.1002/eji.1830191008. [DOI] [PubMed] [Google Scholar]
  52. Both G.W., Sleigh M.J., Cox N.J., Kendal A.P. Antigenic drift in influenza virus H3 hemagglutinin from 1968 to 1980: multiple evolutionary pathways and sequential amino acid changes at key antigenic sites. J. Virol. 1983;48:52–60. doi: 10.1128/jvi.48.1.52-60.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Bradney A.P., Scheer S., Crawford J.M., Buchbinder S.P., Montefiori D.C. Neutralization escape in human immunodeficiency virus type 1-infected long-term nonprogressors. J. Infect. Dis. 1999;179:1264–1267. doi: 10.1086/314711. [DOI] [PubMed] [Google Scholar]
  54. Brambell R.W.R. North-Holland; Amsterdarm: 1970. The Transmission of Immunity from Mother to Young. [Google Scholar]
  55. Brandtzaeg P. Overview of the mucosal immune system. Curr. Top. Microbiol. Immunol. 1989;146:13–25. doi: 10.1007/978-3-642-74529-4_2. [DOI] [PubMed] [Google Scholar]
  56. Brent L. Academic Press; San Diego, CA: 1997. A History of Transplantation Immunology; pp. 403–421. [Google Scholar]
  57. Bretscher P., Cohn M. A theory of self-nonself discrimination. Science. 1970;169:1042–1049. doi: 10.1126/science.169.3950.1042. [DOI] [PubMed] [Google Scholar]
  58. Bro-Jorgensen K., Volkert M. Defects in the immune system of mice infected with lymphocytic choriomeningitis virus. Infect. Immun. 1974;9:605–614. doi: 10.1128/iai.9.4.605-614.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Brown F. Use of peptides for immunization against foot-and-mouth disease. Vaccine. 1988;6:180–182. doi: 10.1016/s0264-410x(88)80024-0. [DOI] [PubMed] [Google Scholar]
  60. Bründler M.-A., Aichele P., Bachmann M.F., Kitamura D., Rajewsky K., Zinkernagel R.M. Immunity to viruses in B cell deficient mice: influence of antibodies on virus-persistence and on T cell memory. Eur. J. Immunol. 1996;26:2257–2262. doi: 10.1002/eji.1830260943. [DOI] [PubMed] [Google Scholar]
  61. Buiting A.M.J., De Rover Z., Kraal G., van Rooijen N. Humoral immune responses against particulate bacterial antigens are dependent on marginal metallophilic macrophages in the spleen. Scand. J. Immunol. 1996;43:398–405. doi: 10.1046/j.1365-3083.1996.d01-54.x. [DOI] [PubMed] [Google Scholar]
  62. Burke D.S., Nisalak A., Johnson D.E., Scott R.M. A prospective study of dengue infections in Bangkok. Am. J. Trop. Med. Hyg. 1988;38:172–180. doi: 10.4269/ajtmh.1988.38.172. [DOI] [PubMed] [Google Scholar]
  63. Burnet F.M., Fenner F. Macmillan; Melbourne: 1949. The Production of Antibodies; pp. 1–142. [Google Scholar]
  64. Burns D.P., Collignon C., Desrosiers R.C. Simian immunodeficiency virus mutants resistant to serum neutralization arise during persistent infection of rhesus monkeys. J. Virol. 1993;67:4104–4113. doi: 10.1128/jvi.67.7.4104-4113.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Burns J.W., Buchmeier M.J. Glycoproteins of the arenaviruses. In: Salvato M.S., editor. Plenum Press; New York: 1993. pp. 17–35. (The Arenaviridae). [Google Scholar]
  66. Burton D.R., Williamson R.A., Parren P.W. Antibody and virus: binding and neutralization. Virology. 2000;270:1–3. doi: 10.1006/viro.2000.0239. [DOI] [PubMed] [Google Scholar]
  67. Cambier J.C. New nomenclature for the Reth motif (or ARH1/TAM/ARAM/YXXL) Immunol Today. 1995;16:110. doi: 10.1016/0167-5699(95)80105-7. [DOI] [PubMed] [Google Scholar]
  68. Carman W.F., Zanetti A.R., Karayiannis P., Waters J., Manzillo G., Tanzi E., Zuckerman A.J., Thomas H.C. Vaccine-induced escape mutant of hepatitis B virus. Lancet. 1990;336:325–329. doi: 10.1016/0140-6736(90)91874-a. [DOI] [PubMed] [Google Scholar]
  69. Carman W.F., Korula L., Wallace L., MacPhee R., Mimms L., Decker R. Fulminant reactivation of hepatitis B due to envelope protein mutant that escaped detection by monoclonal HBsAg ELISA. Lancet. 1995;345:1406–1407. doi: 10.1016/s0140-6736(95)92599-6. [DOI] [PubMed] [Google Scholar]
  70. Carman W.F., Trautwein C., van Deursen F.J., Colman K., Dornan E., McIntyre G., Waters J., Kliem V., Muller R., Thomas H.C., Manns M.P. Hepatitis B virus envelope variation after transplantation with and without hepatitis B immune globulin prophylaxis. Hepatology. 1996;24:489–493. doi: 10.1002/hep.510240304. [DOI] [PubMed] [Google Scholar]
  71. Carotenuto P., Looij D., Keldermans L., de Wolf F., Goudsmit J. Neutralizing antibodies are positively associated with CD4 T-cell counts and T-cell function in long-term AIDS-free infection. AIDS. 1998;12:1591–1600. doi: 10.1097/00002030-199813000-00005. [DOI] [PubMed] [Google Scholar]
  72. Carroll M.C. The role of complement and complement receptors in induction and regulation of immunity. Annu. Rev Immunol. 1998;16:545–568. doi: 10.1146/annurev.immunol.16.1.545. [DOI] [PubMed] [Google Scholar]
  73. Casali P., Notkins A.L. CD5 B lymphocytes, polyreactive antibodies and the human B-cell repertoire. Immunol. Today. 1989;10:364–368. doi: 10.1016/0167-5699(89)90268-5. [DOI] [PubMed] [Google Scholar]
  74. Cascalho M., Ma A., Lee S., Masat L., Wabl M. A quasi-monoclonal mouse. Science. 1996;272:1649–1652. doi: 10.1126/science.272.5268.1649. [DOI] [PubMed] [Google Scholar]
  75. Chackerian B., Lowy D.R., Schiller J.T. Vol. 96. 1999. Induction of autoantibodies to mouse CCR5 with recombinant papillomavirus particles; pp. 2373–2378. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Charan S., Zinkernagel R.M. Antibody mediated suppression of secondary IgM response in nude mice against vesicular stomatitis virus. J. Immunol. 1986;136:3057–3061. [PubMed] [Google Scholar]
  77. Chen C., Nagy Z., Prak E.L., Weigert M. Immunoglobulin heavy chain gene replacement: a mechanism of receptor editing. Immunity. 1995;3:747–755. doi: 10.1016/1074-7613(95)90064-0. [DOI] [PubMed] [Google Scholar]
  78. Chen C., Prak E.L., Weigert M. Editing disease-associated autoantibodies. Immunity. 1997;6:97–105. doi: 10.1016/s1074-7613(00)80673-1. [DOI] [PubMed] [Google Scholar]
  79. Chen Z., Li K., Plagemann P.G. Neuropathogenicity and sensitivity to antibody neutralization of lactate dehydrogenase-elevating virus are determined by polylactosaminoglycan chains on the primary envelope glycoprotein. Virology. 2000;266:88–98. doi: 10.1006/viro.1999.0050. [DOI] [PubMed] [Google Scholar]
  80. Chisari F.V., Ferrari C. Hepatitis B virus immunopathogenesis. Annu. Rev. Immunol. 1995;13:29–60. doi: 10.1146/annurev.iy.13.040195.000333. [DOI] [PubMed] [Google Scholar]
  81. Cho M.W., Lee M.K., Chen C.H., Matthews T., Martin M.A. Identification of gp 120 regions targeted by a highly potent neutralizing antiserum elicited in a chimpanzee inoculated with a primary human immunodeficiency virus type 1 isolate. J. Virol. 2000;74:9749–9754. doi: 10.1128/jvi.74.20.9749-9754.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Christian A.Y., Barna M., Bi Z., Reiss C.S. Host immune response to vesicular stomatitis virus infection of the central nervous system in C57BL/6 mice. Viral Immunol. 1996;9:195–205. doi: 10.1089/vim.1996.9.195. [DOI] [PubMed] [Google Scholar]
  83. Ciurea A., Klenerman P., Hunziker L., Horvath E., Odermatt B., Ochsenbein A.F., Hengartner H., Zinkernagel R.M. Vol. 96. 1999. Persistence of lymphocytic choriomeningitis virus at very low levels in immune mice; pp. 11964–11969. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Ciurea A., Klenerman P., Hunziker L., Horvath E., Senn B.M., Ochsenbein A.F., Hengartner H., Zinkernagel R.M. Vol. 97. 2000. Viral persistence in vivo through selection of neutralizing antibody-escape variants; pp. 2749–2754. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Ciurea A., Hunziker L., Klenerman P., Hengartner H., Zinkernagel R.M. Impairment of CD4 T cell responses during chronic virus infection prevents neutralizing antibody responses against virus escape mutants. J. Exp. Med. 2001;193:297–306. doi: 10.1084/jem.193.3.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Clarke S., Rickert R., Wloch M.K., Staudt L., Gerhard W., Weigert M. Non-random silent mutation and equal numbers of VH and Vk mutations. Vol. 145. 1990. The BALB/c secondary response to the Sb site of influenza virus hemagglutinin; pp. 2286–2296. (J. Immunol.). [PubMed] [Google Scholar]
  87. Clarke S.H., Staudt L.M., Kavaler J., Schwartz D., Gerhard W.U., Weigert M.G. V region gene usage and somatic mutation in the primary and secondary responses to influenza virus hemagglutinin. J. Immunol. 1990;144:2795–2801. [PubMed] [Google Scholar]
  88. Cohen I.R. Regulation of autoimmune disease physiological and therapeutic. Immunol. Rev. 1986;94:5–21. doi: 10.1111/j.1600-065x.1986.tb01161.x. [DOI] [PubMed] [Google Scholar]
  89. Cohn M., Langman R.E. The protection: the unit of humoral immunity selected by evolution. Immunol. Rev. 1990;115:11–147. doi: 10.1111/j.1600-065x.1990.tb00783.x. [DOI] [PubMed] [Google Scholar]
  90. Conley A.J., Conard P., Bondy S., Dolan C.A., Hannah J., Leanza W.J., Marburg S., Rivetna M., Rusiecki V.K., Sugg E.E. Immunogenicity of synthetic HIV-1 gp120 V3-loop peptide-conjugate immunogens. Vaccine. 1994;12:445–451. doi: 10.1016/0264-410x(94)90123-6. [DOI] [PubMed] [Google Scholar]
  91. Cooper N.R. Complement evasion strategies of microorganisms. Immunol. Today. 1991;12:327–331. doi: 10.1016/0167-5699(91)90010-Q. [DOI] [PubMed] [Google Scholar]
  92. Cooper N.R., Nemerow G.R. Complement, viruses, and virus-infected cells. Springer Semin. Immunopathol. 1983;6:327–347. doi: 10.1007/BF02116278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Cooper N.R., Nemerow G.R. The role of antibody and complement in the control of viral infections. J. Invest. Dermatol. 1984;83:121s–127s. doi: 10.1111/1523-1747.ep12281847. [DOI] [PubMed] [Google Scholar]
  94. Coutinho A. Beyond clonal selection and network. Immunol. Rev. 1989;110:63–87. doi: 10.1111/j.1600-065x.1989.tb00027.x. [DOI] [PubMed] [Google Scholar]
  95. Coutinho A., Kazatchkine M.D., Avrameas S. Natural antibodies. Curr. Opin. Immunol. 1995;7:812–818. doi: 10.1016/0952-7915(95)80053-0. [DOI] [PubMed] [Google Scholar]
  96. Coutinho A., Moller G. Thymus-independent B-cell induction and paralysis. Adv. Immunol. 1975;21:113–236. doi: 10.1016/s0065-2776(08)60220-5. [DOI] [PubMed] [Google Scholar]
  97. Cox N.J., Subbarao K. Global epidemiology of influenza: past and present. Annu. Rev. Med. 2000;51:407–421. doi: 10.1146/annurev.med.51.1.407. [DOI] [PubMed] [Google Scholar]
  98. Daeron M. Fc receptor biology. Annu. Rev. Immunol. 1997;15:203–234. doi: 10.1146/annurev.immunol.15.1.203. [DOI] [PubMed] [Google Scholar]
  99. Della-Porta A.J., Westaway E.G. A multi-hit model for the neutralization of animal viruses. J. Gen. Virol. 1978;38:1–19. doi: 10.1099/0022-1317-38-1-1. [DOI] [PubMed] [Google Scholar]
  100. Dempsey P.W., Allison M.E., Akkaraju S., Goodnow C.C., Fearon D.T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science. 1996;271:348–350. doi: 10.1126/science.271.5247.348. [DOI] [PubMed] [Google Scholar]
  101. Diamond D.C., Jameson B.A., Bonin J., Kohara M., Abe S., Itoh H., Komatsu T., Arita M., Kuge S., Nomoto A., Osterhaus A.D.M.E., Crainic R., Wimmer E. Antigenic variation and resistance to neutralization in poliovirus type 1. Science. 1985;229:1090–1093. doi: 10.1126/science.2412292. [DOI] [PubMed] [Google Scholar]
  102. Diaz M., Flajnik M.F. Evolution of somatic hypermutation and gene conversion in adaptive immunity. Immunol. Rev. 1998;162:13–24. doi: 10.1111/j.1600-065x.1998.tb01425.x. [DOI] [PubMed] [Google Scholar]
  103. Dietzschold B., Gore M., Casali P., Ueki Y., Rupprecht C.E., Notkins A.L., Koprowski H. Biological characterization of human monoclonal antibodies to rabies virus. J. Virol. 1990;64:3087–3090. doi: 10.1128/jvi.64.6.3087-3090.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Dimmock N.J. Mechanisms of neutralization of animal viruses. J. Gen. Virol. 1984;65:1011–1015. doi: 10.1099/0022-1317-65-6-1015. [DOI] [PubMed] [Google Scholar]
  105. Dimmock N.J. Neutralization of animal viruses. Curr. Top. Microbiol. Immunol. 1993;183:1–149. doi: 10.1007/978-3-642-77849-0. [DOI] [PubMed] [Google Scholar]
  106. Dintzis H.M., Dintzis R.Z., Vogelstein B. Vol. 73. 1976. Molecular determinants of immunogenicity: the immunon model of immune response; pp. 3671–3675. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Dintzis R.Z., Okajima M., Middleton M.H., Greene G., Dintzis H.M. The immunogenicity of soluble haptenated polymers is determined by molecular mass and hapten valence. J. Immunol. 1989;143:1239–1244. [PubMed] [Google Scholar]
  108. Domingo E., Holland J.J. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 1997;51:151–178. doi: 10.1146/annurev.micro.51.1.151. [DOI] [PubMed] [Google Scholar]
  109. Domingo E., Diez J., Martinez M.A., Hernandez J., Holguin A., Borrego B., Mateu M.G. Antigenic variation is not dependent on immune selection. Vol. 74. 1993. New observations on antigenic diversification of RNA viruses; pp. 2039–2045. (J. Gen. Virol.). [DOI] [PubMed] [Google Scholar]
  110. Dulbecco R., Vogt M., Strickland A. A study of the basic aspects of neutralization of two animal viruses, western equine encephalitis virus and poliomyelitis virus. Virology. 1956;2:162–205. doi: 10.1016/0042-6822(56)90017-4. [DOI] [PubMed] [Google Scholar]
  111. Effros R.B., Frankel M.E., Gerhard W., Doherty P.C. Inhibition of influenza-immune T cell effector function by virus-specific hybridoma antibody. J. Immunol. 1979;123:1343–1346. [PubMed] [Google Scholar]
  112. Ehrenstein M.R., O'Keefe T.L., Davies S.L., Neuberger M.S. Vol. 95. 1998. Targeted gene disruption reveals a role for natural secretory IgM in the maturation of the primary immune response; pp. 10089–10093. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Ehrlich P. Wiley; New York: 1906. pp. 442–447. (Collective Study on Immunity). [Google Scholar]
  114. Eisen H.N., Siskind G.W. Variations in affinities of antibodies during the immune response. Biochemistry. 1964;3:996–1008. doi: 10.1021/bi00895a027. [DOI] [PubMed] [Google Scholar]
  115. Emini E.A., Ostapchuk P., Wimmer E. Bivalent attachment of antibody onto poliovirus leads to conformational alteration and neutralization. J. Virol. 1983;48:547–550. doi: 10.1128/jvi.48.2.547-550.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Englund J., Glezen W.P., Piedra P.A. Maternal immunization against viral disease. Vaccine. 1998;16:1456–1463. doi: 10.1016/s0264-410x(98)00108-x. [DOI] [PubMed] [Google Scholar]
  117. Evans D.G. Persistence of tetanus antitoxin in man following active immunisation. Lancet. 1943;11:316–317. Sept. [Google Scholar]
  118. Fang W., Weintraub B.C., Dunlap B., Garside P., Pape K.A., Jenkins M.K., Goodnow C.C., Mueller D.L., Behrens T.W. Self-reactive B lymphocytes overexpressing Bcl-xL escape negative selection and are tolerized by clonal anergy and receptor editing. Immunity. 1998;9:35–45. doi: 10.1016/s1074-7613(00)80586-5. [DOI] [PubMed] [Google Scholar]
  119. Farci P., Shimoda A., Wong D., Cabezon T., De Gioannis D., Strazzera A., Shimizu Y., Shapiro M., Alter H.J., Purcell R.H. Vol. 93. 1996. Prevention of hepatitis Cvirus infection in chimpanzees by hyperimmune serum against the hypervariable region 1 of the envelope 2 protein; pp. 15394–15399. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Farci P., Shimoda A., Coiana A., Diaz G., Peddis G., Melpolder J.C., Strazzera A., Chien D.Y., Munoz S.J., Balestrieri A., Purcell R.H., Alter H.J. The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies. Science. 2000;288:339–344. doi: 10.1126/science.288.5464.339. [DOI] [PubMed] [Google Scholar]
  121. Fazekas de St. Groth S. The joint evolution of antigens and antibodies. In: Steinberg C.M., Lefkovits I., di Lorenzo C., editors. Karger; Basel: 1981. pp. 155–168. (The Immune System). [Google Scholar]
  122. Fazekas de St. Groth S., Webster R.G. Methods in immunochemistry of viruses. I. Equilibrium filtration. J. Exp. Biol. 1961;39:549–562. [Google Scholar]
  123. Fazekas de St. Groth S., Webster R.G. Disquisitions on original antigenic sin. I: Evidence in man. J. Exp. Med. 1966;140:355–360. doi: 10.1084/jem.124.3.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Fazekas de St. Groth S., Webster R.G. Disquisitions on original antigenic sin. II: Proof in lower creatures. J. Exp. Med. 1966;124:347–361. doi: 10.1084/jem.124.3.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Fearon D.T., Carter R.H. The CD19/CR2/TAPA-1 complex of B lymphocytes: linking natural to acquired immunity. Annu. Rev Immunol. 1995;13:127–149. doi: 10.1146/annurev.iy.13.040195.001015. [DOI] [PubMed] [Google Scholar]
  126. Fearon D.T., Locksley R.M. The instructive role of innate immunity in the acquired immune response. Science. 1996;272:50–54. doi: 10.1126/science.272.5258.50. [DOI] [PubMed] [Google Scholar]
  127. Fehr T., Bachmann M.F., Bluethmann H., Kikutani H., Hengartner H., Zinkernagel R.M. T-independent activation of B cells by vesicular stomatitis virus: no evidence for the need of a second signal. Cell Immunol. 1996;168:184–192. doi: 10.1006/cimm.1996.0065. [DOI] [PubMed] [Google Scholar]
  128. Fehr T., Bachmann M.F., Bucher E., Kalinke U., Padova F.E.D., Lang A.B., Hengartner H., Zinkernagel R.M. Role of repetitive antigen patterns for induction of antibodies against antibodies. J. Exp. Med. 1997;185:1785–1792. doi: 10.1084/jem.185.10.1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Fehr T., Naim H.Y., Bachmann M.F., Ochsenbein A.F., Spielhofer P., Bucher E., Hengartner H., Billeter M.A., Zinkernagel R.M. T-cell independent IgM and enduring protective IgG antibodies induced by chimeric measles viruses. Nat. Med. 1998;4:945–948. doi: 10.1038/nm0898-945. [DOI] [PubMed] [Google Scholar]
  130. Fehr T., Rickert R.C., Odermatt B., Roes J., Rajewsky K., Hengartner H., Zinkernagel R.M. Antiviral protection and germinal center formation, but impaired B cell memory in the absence of CD19. J. Exp. Med. 1998;188:145–155. doi: 10.1084/jem.188.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Fehr T., Lopez-Macias C., Odermatt B., Torres R.M., Schubart D.B., O'Keefe T.L., Matthias P., Hengartner H., Zinkernagel R.M. Correlation of anti-viral B cell responses and splenic morphology with expression of B cell-specific molecules. Int. Immunol. 2000;12:1275–1284. doi: 10.1093/intimm/12.9.1275. [DOI] [PubMed] [Google Scholar]
  132. Fenner F. Mousepox (infectious ectromelia of mice): a review. J. Immunol. 1949;63:341–373. [PubMed] [Google Scholar]
  133. Fischer M.B., Goerg S., Shen L., Prodeus A.P., Goodnow C.C., Kelsoe G., Carroll M.C. Dependence of germinal center B cells on expression of CD21/CD35 for survival. Science. 1998;280:582–585. doi: 10.1126/science.280.5363.582. [DOI] [PubMed] [Google Scholar]
  134. Flamand A., Raux H., Gaudin Y., Ruigrok R.W.H. Mechanisms of rabies virus neutralization. Virology. 1993;194:302–313. doi: 10.1006/viro.1993.1261. [DOI] [PubMed] [Google Scholar]
  135. Frade R., Barel M., Ehlin-Henriksson B., Klein G. Vol. 82. 1985. gp140, the C3d receptor of human B lymphocytes, is also the Epstein-Barr virus receptor; pp. 1490–1493. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Francis T., Jr., Davenport F.M., Hennessy A.V. A serological recapitulation of human infection with different strains of influenza virus. Trans. Assoc. Am. Phys. 1953;66:231–238. [PubMed] [Google Scholar]
  137. Frazer I.H., Thomas R., Zhou J., Leggatt G.R., Dunn L., McMillan N., Tindle R.W., Filgueira L., Manders P., Barnard P., Sharkey M. Potential strategies utilised by papillomavirus to evade host immunity. Immunol. Rev. 1999;168:131–142. doi: 10.1111/j.1600-065x.1999.tb01288.x. [DOI] [PubMed] [Google Scholar]
  138. Freer G., Burkhart C., Ciernik I., Bachmann M.F., Hengartner H., Zinkernagel R.M. Vesicular stomatitis virus Indiana glycoprotein as a T-cell-dependent and -independent antigen. J. Virol. 1994;68:3650–3655. doi: 10.1128/jvi.68.6.3650-3655.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Fries L.F., Gaither T.A., Hammer C.H., Frank M.M. C3b covalently bound to IgG demonstrates a reduced rate of inactivation by factors H and I. J Exp. Med. 1984;160:1640–1655. doi: 10.1084/jem.160.6.1640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Funk G.A., Barbour A.D., Hengartner H., Kalinke U. Mathematical model of a virus-neutralizing immunglobulin response. J. Theor. Biol. 1998;195:41–52. doi: 10.1006/jtbi.1998.0779. [DOI] [PubMed] [Google Scholar]
  141. Garenne M., Leroy O., Beau J.P., Sene I. Child mortality after high-titre measles vaccines: prospective study in Senegal. Lancet. 1991;338:903–907. doi: 10.1016/0140-6736(91)91771-l. [DOI] [PubMed] [Google Scholar]
  142. Gay D., Saunders T., Camper S., Weigert M. Receptor editing: an approach by autoreactive B cells to escape tolerance. J. Exp. Med. 1993;177:999–1008. doi: 10.1084/jem.177.4.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Gebauer F., de la Torre J.C., Gomes I., Mateu M.G., Barahona H., Tiraboschi B., Bergmann I., Auge de Mello P., Domingo E. Rapid selection of genetic and antigenic variants of foot-and-mouth disease virus during persistence in cattle. J. Virol. 1988;62:2041–2049. doi: 10.1128/jvi.62.6.2041-2049.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Germann D., Strohle A., Eggenberger K., Steiner C.A., Matter L. An outbreak of mumps in a population partially vaccinated with the Rubini strain. Scand. J. Infect. Dis. 1996;28:235–238. doi: 10.3109/00365549609027163. [DOI] [PubMed] [Google Scholar]
  145. Gobet R., Cerny A., Rüedi E., Hengartner H., Zinkernagel R.M. The role of antibodies in natural and acquired resistance of mice to vesicular stomatitis virus. Exp. Cell Biol. 1988;56:175–180. doi: 10.1159/000163477. [DOI] [PubMed] [Google Scholar]
  146. Goldbaum F.A., Cauerhff A., Velikovsky C.A., Llera A.S., Riottot M.M., Poljak R.J. Lack of significant differences in association rates and affinities of antibodies from short-term and long-term responses to hen egg lysozyme. J. Immunol. 1999;162:6040–6045. [PubMed] [Google Scholar]
  147. Good R.A., Zak S.J. Disturbances in gamma globulin synthesis as experiments of nature. Pediatrics. 1956;18:109–149. [PubMed] [Google Scholar]
  148. Goodnow C.C., Crosbie J., Jorgensen H., Brink R.A., Basten A. Induction of self-tolerance in mature peripheral B lymphocytes. Nature. 1989;342:385–391. doi: 10.1038/342385a0. [DOI] [PubMed] [Google Scholar]
  149. Graham D.G., Gordon A., Ashworth B., Yap P.L. Immunodeficiency measles encephalitis. J. Clin. Lab Immunol. 1983;10:117–120. [PubMed] [Google Scholar]
  150. Gray D. Immunological memory. Annu. Rev. Immunol. 1993;11:49–77. doi: 10.1146/annurev.iy.11.040193.000405. [DOI] [PubMed] [Google Scholar]
  151. Gupta S.C., Hengartner H., Zinkernagel R.M. Vol. 83. 1986. Primary antibody responses to a well-defined and unique hapten are not enhanced by preimmunization with carrier: analysis in a viral model; pp. 2604–2608. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Gwatkin D.R. Health inequalities and the health of the poor: what do we know? What can we do? Bull. World Health Org. 2000;78:3–18. [PMC free article] [PubMed] [Google Scholar]
  153. Halstead S.B. Pathogenesis of dengue: challenges to molecular biology. Science. 1988;239:476–481. doi: 10.1126/science.3277268. [DOI] [PubMed] [Google Scholar]
  154. Han S., Dillon S.R., Zheng B., Shimoda M., Schlissel M.S., Kelsoe G. V(D)J recombinase activity in a subset of germinal center B lymphocytes. Science. 1997;278:301–305. doi: 10.1126/science.278.5336.301. [DOI] [PubMed] [Google Scholar]
  155. Hartley S.B., Cooke M.P., Fulcher D.A., Harris A.W., Cory S., Basten A., Goodnow C.C. Elimination of self-reactive B lymphocytes proceeds in two stages: arrested development and cell death. Cell. 1993;72:325–335. doi: 10.1016/0092-8674(93)90111-3. [DOI] [PubMed] [Google Scholar]
  156. Haury M., Sundblad A., Grandien A., Barreau C., Coutinho A., Nobrega A. The repertoire of serum IgM in normal mice is largely independent of external antigenic contact. Eur. J. Immunol. 1997;27:1557–1563. doi: 10.1002/eji.1830270635. [DOI] [PubMed] [Google Scholar]
  157. Hawkes R.A. Enhancement of the infectivity of arboviruses by specific antisera produced in domestic fowls. Aust. J. Exp. Biol. Med. Sci. 1964;42:465–482. doi: 10.1038/icb.1964.44. [DOI] [PubMed] [Google Scholar]
  158. Heidelberger M. Academic Press; New York: 1956. (Lectures in Immunochemistry). [Google Scholar]
  159. Hertz M., Kouskoff V., Nakamura T., Nemazee D. V(D)J recombinase induction in splenic B lymphocytes is inhibited by antigen-receptor signalling. Nature. 1998;394:292–295. doi: 10.1038/28419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Herzenberg L.A., Kantor A.B. B-cell lineages exist in the mouse. Immunol. Today. 1993;14:79–83. doi: 10.1016/0167-5699(93)90063-Q. [DOI] [PubMed] [Google Scholar]
  161. Holland J.J., Spindler K., Horodyski F., Grabau E., Nichol S., Vandepol S. Rapid evolution of RNA genomes. Science. 1982;215:1577–1585. doi: 10.1126/science.7041255. [DOI] [PubMed] [Google Scholar]
  162. Homsy J., Meyer M., Tateno M., Clarkson S., Levy J.A. The Fc and not CD4 receptor mediates antibody enhancement of HIV infection in human cells. Science. 1989;244:1357–1360. doi: 10.1126/science.2786647. [DOI] [PubMed] [Google Scholar]
  163. Hotchin J. Vol. 27. 1962. The biology of lymphocytic choriomeningitis infection: virus induced immune disease; pp. 479–499. (Cold Spring Harbor Symp. Quant. Biol.). [DOI] [PubMed] [Google Scholar]
  164. Hotchin J., Sikora E. Protection against the lethal effect of lymphocytic choriomeningitis virus in mice by neonatal thymectomy. Nature. 1964;202:214–215. doi: 10.1038/202214a0. [DOI] [PubMed] [Google Scholar]
  165. Hovi T., Cantell K., Huovilainen A., Kinnunen E., Kunonen T., Lapinleimu K., Poyry T., Roivaianen M., Salama N., Stenvik M., Silander A., Tholen C.J., Salminen S., Weckstrom P. Outbreak of paralytic poliomyelitis in Finland: widespread circulation of antigenically altered poliovirus type 3 in a vaccinated population. Lancet. 1986;1:1427–1432. doi: 10.1016/s0140-6736(86)91566-7. [DOI] [PubMed] [Google Scholar]
  166. Hsu H.Y., Chang M.H., Ni Y.H., Lin H.H., Wang S.M., Chen D.S. Surface gene mutants of hepatitis B virus in infants who develop acute or chronic infections despite immunoprophylaxis. Hepatology. 1997;26:786–791. doi: 10.1002/hep.510260336. [DOI] [PubMed] [Google Scholar]
  167. Iorio R.M. Mechanisms of neutralization of animal viruses: monoclonal antibodies provide a new perspective. Microb. Pathog. 1988;5:1–7. doi: 10.1016/0882-4010(88)90075-7. [DOI] [PubMed] [Google Scholar]
  168. Jackson D.C., Murray J.M., White D.O., Gerhard W.U. Enumeration of antigenic sites of influenza virus hemagglutinin. Infect. Immun. 1982;37:912–918. doi: 10.1128/iai.37.3.912-918.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Jacobs R.P., Cole G.A. Lymphocytic choriomeningitis virus-induced immunosuppression: a virus-induced macrophage defect. J. Immunol. 1976;117:1004–1009. [PubMed] [Google Scholar]
  170. Jansen A., Voorbij H.A., Jeucken P.H., Bruining G.J., Hooijkaas H., Drexhage H.A. A comparison with similar infiltrates found in the pancreas of a diabetic infant. Vol. 15. 1993. An immunohistochemical study on organized lymphoid cell infiltrates in fetal and neonatal pancreases; pp. 31–38. (Autoimmunity). [DOI] [PubMed] [Google Scholar]
  171. Jerne N.K. A study of avidity based on rabbit skin responses to diphteria toxin-antitoxin mixtures. Acta Path. Microbiol. Scand. 1951;87:1–183. (suppl.) [PubMed] [Google Scholar]
  172. Jerne N.K. Idiotypic networks and other preconceived ideas. Immunol. Rev. 1984;79:5–25. doi: 10.1111/j.1600-065x.1984.tb00484.x. [DOI] [PubMed] [Google Scholar]
  173. Johnson R.T., Mims C.A. Pathogenesis of viral infections of the nervous system. N. Engl. J. Med. 1968;278:23–30. doi: 10.1056/NEJM196801042780106. [DOI] [PubMed] [Google Scholar]
  174. Kagi D., Ledermann B., Bürki K., Seiler P., Odermatt B., Olsen K.J., Podack E.R., Zinkernagel R.M., Hengartner H. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature. 1994;369:31–37. doi: 10.1038/369031a0. [DOI] [PubMed] [Google Scholar]
  175. Kalinke U., Bucher E.M., Oxenius A., Ernst B., Roost H.-P., Geley S., Kofler R., Zinkernagel R.M., Hengartner H. The role of somatic mutation in the generation of the protective humoral immune response against vesicular stomatitis virus (VSV) Immunity. 1996;5:639–652. doi: 10.1016/s1074-7613(00)80277-0. [DOI] [PubMed] [Google Scholar]
  176. Kalinke U., Krebber A., Krebber C., Bucher E., Plückthun A., Zinkernagel R.M., Hengartner H. Monovalent single-chain Fv fragments and bivalent miniantibodies bound to vesicular stomatitis virus (VSV) protect against lethal infection. Eur. J. Immunol. 1996;26:2801–2806. doi: 10.1002/eji.1830261202. [DOI] [PubMed] [Google Scholar]
  177. Kalinke U., Oxenius A., Lopez-Macias C., Zinkernagel R.M., Hengartner H. Vol. 97. 2000. Virus neutralization by germ-line vs. hypermutated antibodies; pp. 10126–10131. (Proc. Natl. Acad Sci USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Kaplan G., Peters D., Racaniello V.R. Poliovirus mutants resistant to neutralization with soluble cell receptors. Science. 1990;250:1596–1599. doi: 10.1126/science.2177226. [DOI] [PubMed] [Google Scholar]
  179. Katayama Y., Hotta H., Nishimura A., Tatsuno Y., Homma M. Detection of measles virus nucleoprotein mRNA in autopsied brain tissues. J. Gen. Virol. 1995;76:3201–3204. doi: 10.1099/0022-1317-76-12-3201. (pt. 12) [DOI] [PubMed] [Google Scholar]
  180. Katz D.H., Benacerraf B. The regulatory influence of activated T cells on B cell responses to antigen. Adv. Immunol. 1972;15:1–94. doi: 10.1016/s0065-2776(08)60683-5. [DOI] [PubMed] [Google Scholar]
  181. Kimata J.T., Kuller L., Anderson D.B., Dailey P., Overbaugh J. Emerging cytopathic and antigenic simian immunodeficiency virus variants influence AIDS progression. Nat. Med. 1999;5:535–541. doi: 10.1038/8414. [DOI] [PubMed] [Google Scholar]
  182. Kitamura D., Roes J., Kuhn R., Rajewsky K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature. 1991;350:423–426. doi: 10.1038/350423a0. [DOI] [PubMed] [Google Scholar]
  183. Kouskoff V., Lacaud G., Nemazee D. T cell-independent rescue of B lymphocytes from peripheral immune tolerance. Science. 2000;287:2501–2503. doi: 10.1126/science.287.5462.2501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Kundig T.M., Bachmann M.F., Dipaolo C., Simard J.J., Battegay M., Lother H., Gessner A., Kuhlcke K., Ohashi P.S., Hengartner H. Fibroblasts as efficient antigen-presenting cells in lymphoid organs. Science. 1995;268:1343–1347. doi: 10.1126/science.7761853. [DOI] [PubMed] [Google Scholar]
  185. Kundig T.M., Bachmann M.F., Oehen S., Hoffmann U.W., Simard J.J., Kalberer C.P., Pircher H.P., Ohashi P.S., Hengartner H., Zinkernagel R.M. Vol. 93. 1996. On the role of antigen in maintaining cytotoxic T-cell memory; pp. 9716–9723. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Kurosaki T., Ravetch J.V. A single amino acid in the glycosyl phosphatidylinositol attachment domain determines the membrane topology of Fc gamma RIII. Nature. 1989;342:805–807. doi: 10.1038/342805a0. [DOI] [PubMed] [Google Scholar]
  187. Lacasse R.A., Follis K.E., Moudgil T., Trahey M., Binley J.M., Planelles V., Zolla-Pazner S., Nunberg J.H. Coreceptor utilization by human immunodeficiency virus type 1 is not a primary determinant of neutralization sensitivity. J. Virol. 1998;72:2491–2495. doi: 10.1128/jvi.72.3.2491-2495.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Lachmann P.J., Davies A. Complement and immunity to viruses. Immunol. Rev. 1997;159:69–77. doi: 10.1111/j.1600-065x.1997.tb01007.x. [DOI] [PubMed] [Google Scholar]
  189. Lafferty K.J. The interaction between virus and antibody. II. Mechanism of the reaction. Virology. 1963;21:76–81. doi: 10.1016/0042-6822(63)90306-4. [DOI] [PubMed] [Google Scholar]
  190. Lamarre A., Talbot P.J. Protection from lethal coronavirus infection by immunoglobulin fragments. J. Immunol. 1995;154:3975–3984. [PubMed] [Google Scholar]
  191. Lamarre A., Yu M.W., Chagnon F., Talbot P.J. A recombinant single chain antibody neutralizes coronavirus infectivity but only slightly delays lethal infection of mice. Eur. J. Immunol. 1997;27:3447–3455. doi: 10.1002/eji.1830271245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Lambkin R., McLain L., Jones S.E., Aldridge S.L., Dimmock N.J. Neutralization escape mutants of type A influenza virus are readily selected by antisera from mice immunized with whole virus: a possible mechanism for antigenic drift. J. Gen. Virol. 1994;75:3493–3502. doi: 10.1099/0022-1317-75-12-3493. [DOI] [PubMed] [Google Scholar]
  193. Lang J., Jackson M., Teyton L., Brunmark A., Kane K., Nemazee D. B cells are exquisitely sensitive to central tolerance and receptor editing induced by ultralow affinity, membrane-bound antigen. J. Exp. Med. 1996;184:1685–1697. doi: 10.1084/jem.184.5.1685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Langman R.E., Cohn M. Two signal models of lymphocyte activation? Immunol. Today. 1993;14:235–237. doi: 10.1016/0167-5699(93)90171-G. [DOI] [PubMed] [Google Scholar]
  195. Laver W.G., Air G.M., Webster R.G., Smith-Gill S.J. Epitopes on protein antigens: misconceptions and realities. Cell. 1990;61:553–556. doi: 10.1016/0092-8674(90)90464-p. [DOI] [PubMed] [Google Scholar]
  196. Lee W. Hepatitis B virus infection. N. Engl. J. Med. 1997;337:1733–1745. doi: 10.1056/NEJM199712113372406. [DOI] [PubMed] [Google Scholar]
  197. Lefrancois L. Protection against lethal viral infection by neutralizing and nonneutralizing monoclonal antibodies: distinct mechanisms of action in vivo. J. Virol. 1984;51:208–214. doi: 10.1128/jvi.51.1.208-214.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Lefrancois L., Lyles D.S. Antigenic determinants of vesicular stomatitis virus: analysis with antigenic variants. J. Immunol. 1983;130:394–398. [PubMed] [Google Scholar]
  199. Lehmann-Grube F. Lymphocytic choriomeningitis virus. Virol. Monogr. 1971;10:1–173. [Google Scholar]
  200. Leist T.P., Rüedi E., Zinkernagel R.M. Virus-triggered immune suppression in mice caused by virus-specific cytotoxic T cells. J. Exp. Med. 1988;167:1749–1754. doi: 10.1084/jem.167.5.1749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Levine B., Hardwick J.M., Trapp B.D., Crawford T.O., Bollinger R.C., Griffin D.E. Antibody-mediated clearance of alphavirus infection from neurons. Science. 1991;254:856–860. doi: 10.1126/science.1658936. [DOI] [PubMed] [Google Scholar]
  202. Lewis R.M., Cosgriff T.M., Griffin B.Y., Rhoderick J., Jahrling P.B. Immune serum increases arenavirus replication in monocytes. J. Gen. Virol. 1988;69:1735–1739. doi: 10.1099/0022-1317-69-7-1735. [DOI] [PubMed] [Google Scholar]
  203. Liang S., Mozdzanowska K., Palladino G., Gerhard W. Effector mechanisms and their longevity. Vol. 152. 1994. Heterosubtypic immunity to influenza type A virus in mice; pp. 1653–1661. (J. Immunol.). [PubMed] [Google Scholar]
  204. Lopez-Macias C., Kalinke U., Cascalho M., Wabl M., Hengartner H., Zinkernagel R.M., Lamarre A. Secondary rearrangements and hypermutation generate sufficient B cell diversity to mount protective antiviral immunoglobulin responses. J. Exp. Med. 1999;189:1791–1798. doi: 10.1084/jem.189.11.1791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Ludewig B., Odermatt B., Landmann S., Hengartner H., Zinkernagel R.M. Dendritic cells induce autoimmune diabetes and maintain disease via de novo formation of local lymphoid tissue. J. Exp. Med. 1998;188:1493–1501. doi: 10.1084/jem.188.8.1493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Ludewig B., Odermatt B., Ochsenbein A.F., Zinkernagel R.M., Hengartner H. Role of dendritic cells in the induction and maintenance of autoimmune diseases. Immuno. Rev. 1999;169:45–54. doi: 10.1111/j.1600-065x.1999.tb01305.x. [DOI] [PubMed] [Google Scholar]
  207. Luo L.H., Li Y., Snyder R.M., Wagner R.R. Point mutations in glycoprotein gene of vesicular stomatitis virus (New Jersey serotype) selected by resistance to neutralization by epitope-specific monoclonal antibodies. Virology. 1988;163:341–348. doi: 10.1016/0042-6822(88)90274-7. [DOI] [PubMed] [Google Scholar]
  208. Lutz H.U., Bussolino F., Flepp R., Fasler S., Stammler P., Kazatchkine M.D., Arese P. Vol. 84. 1987. Naturally occurring anti-band-3 antibodies and complement together mediate phagocytosis of oxidatively stressed human erythrocytes; pp. 7368–7372. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Mackaness G.B. Cellular resistance to infection. J. Exp. Med. 1962;116:381–406. doi: 10.1084/jem.116.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Mackaness G.B. The immunological basis of acquired cellular resistance. J. Exp. Med. 1964;120:105–120. doi: 10.1084/jem.120.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Mackaness G.B. The influence of immunologically committed lymphoid cells on macrophage activity in vivo. J. Exp. Med. 1969;129:973–992. doi: 10.1084/jem.129.5.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Macpherson A.J., Gatto D., Sainsbury E., Harriman G.R., Hengartner H., Zinkernagel R.M. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science. 2000;288:2222–2226. doi: 10.1126/science.288.5474.2222. [DOI] [PubMed] [Google Scholar]
  213. Malfait P., Jataou I.M., Jollet M.C., Margot A., De Benoist A.C., Moren A. Measles epidemic in the urban community of Niamey: transmission patterns, vaccine efficacy and immunization strategies, Niger, 1990 to 1991. Pediatr. Infect. Dis. J. 1994;13:38–45. doi: 10.1097/00006454-199401000-00009. [DOI] [PubMed] [Google Scholar]
  214. Mandel B. Neutralization of poliovirus: a hypothesis to explain the mechanism and the one-hit character of the neutralization reaction. Virology. 1976;69:500–510. doi: 10.1016/0042-6822(76)90480-3. [DOI] [PubMed] [Google Scholar]
  215. Manz R.A., Lohning M., Cassese G., Thiel A., Radbruch A. Survival of long-lived plasma cells is independent of antigen. Int. Immunol. 1998;10:1703–1711. doi: 10.1093/intimm/10.11.1703. [DOI] [PubMed] [Google Scholar]
  216. Maruyama M., Lam K.P., Rajewsky K. Memory B-cell persistence is independent of persisting immunizing antigen. Nature. 2000;407:636–642. doi: 10.1038/35036600. [DOI] [PubMed] [Google Scholar]
  217. Mascola J.R., Lewis M.G., Stiegler G., Harris D., Vancott T.C., Hayes D., Louder M.K., Brown C.R., Sapan C.V., Frankel S.S., Lu Y., Robb M.L., Katinger H., Birx D.L. Protection of macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J. Virol. 1999;73:4009–4018. doi: 10.1128/jvi.73.5.4009-4018.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Mascola J.R., Mathieson B.J., Zack P.M., Walker M.C., Halstead S.B., Burke D.S. Summary report: workshop on the potential risks of antibody-dependent enhancement in human HIV vaccine trials. AIDS Res. Hum. Retroviruses. 1993;9:1175–1184. doi: 10.1089/aid.1993.9.1175. [DOI] [PubMed] [Google Scholar]
  219. Mascola J.R., Stiegler G., Vancott T.C., Katinger H., Carpenter C.B., Hanson C.E., Beary H., Hayes D., Frankel S.S., Birx D.L., Lewis M.G. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat. Med. 2000;6:207–210. doi: 10.1038/72318. [DOI] [PubMed] [Google Scholar]
  220. Mateu M.G., Martinez M.A., Rocha E., Andreu D., Parejo J., Giralt E., Sobrino F., Domingo E. Vol. 86. 1989. Implications of a quasispecies genome structure: effect of frequent, naturally occurring amino acid substitutions on the antigenicity of foot-and-mouth disease virus; pp. 5883–5887. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Matloubian M., Concepcion R.J., Ahmed R. CD4 T cells are required to sustain CD8 cytotoxic T-cell responses during chronic viral infection. J. Virol. 1994;68:8056–8063. doi: 10.1128/jvi.68.12.8056-8063.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Matzinger P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 1994;12:991–1045. doi: 10.1146/annurev.iy.12.040194.005015. [DOI] [PubMed] [Google Scholar]
  223. McChesney M.B., Oldstone M.B. Virus-induced immunosuppression: infections with measles virus and human immunodeficiency virus. Adv. Immunol. 1989;45:335–380. doi: 10.1016/s0065-2776(08)60696-3. [DOI] [PubMed] [Google Scholar]
  224. McConnell I., Klein G., Lint T.F., Lachmann P.J. Activation of the alternative complement pathway by human B cell lymphoma lines is associated with Epstein-Barr virus transformation of the cells. Eur. J. Immunol. 1978;8:453–458. doi: 10.1002/eji.1830080702. [DOI] [PubMed] [Google Scholar]
  225. Meffre E., Papavasiliou F., Cohen P., de Bouteiller O., Bell D., Karasuyama H., Schiff C., Banchereau J., Liu Y.J., Nussenzweig M.C. Antigen receptor engagement turns off the V(D)J recombination machinery in human tonsil B cells. J. Exp. Med. 1998;188:765–772. doi: 10.1084/jem.188.4.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Michalak T.I., Pasquinelli C., Guilhot S., Chisari F.V. Hepatitis B virus persistence after recovery from acute viral hepatitis. J. Clin. Invest. 1994;93:230–239. doi: 10.1172/JCI116950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  227. Mills B.J., Beebe D.P., Cooper N.R. Antibody-independent neutralization of vesicular stomatitis virus by human complement. II. Formation of VSV-lipoprotein complexes in human serum and complement-dependent viral lysis. J. Immunol. 1979;123:2518–2524. [PubMed] [Google Scholar]
  228. Mims C.A. Academic Press; San Diego, CA: 1987. The Pathogenesis of Infectious Diseases. [Google Scholar]
  229. Mims C.A., Tosolini F.A. Pathogenesis of lesions in lymphoid tissue of mice infected with lymphocytic choriomeningitis (LCM) virus. Br. J. Exp. Pathol. 1969;50:584–592. [PMC free article] [PubMed] [Google Scholar]
  230. Mims C.A., Wainwright S. The immunodepressive action of lymphocytic choriomeningitis virus in mice. J. Immunol. 1968;101:717–724. [PubMed] [Google Scholar]
  231. Mitchison N.A. The carrier effect in the secondary response to hapten-protein conjugates. V. Use of antilymphocyte serum to deplete animals of helper cells. Eur. J. Immunol. 1971;1:68–75. doi: 10.1002/eji.1830010204. [DOI] [PubMed] [Google Scholar]
  232. Miyajima I., Dombrowicz D., Martin T.R., Ravetch J.V., Kinet J.P., Galli S.J. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis. Vol. 99. 1997. Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and Fc gammaRIII; pp. 901–914. (J. Clin. Invest.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  233. Molina H., Holers V.M., Li B., Fung Y., Mariathasan S., Goellner J., Strauss-Schoenberger J., Karr R.W., Chaplin D.D. Vol. 93. 1996. Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2; pp. 3357–3361. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  234. Moller G. One non-specific signal triggers B lymphocytes. Transplant. Rev. 1975;23:126–137. [PubMed] [Google Scholar]
  235. Mondelli M., Eddleston A.L. Mechanisms of liver cell injury in acute and chronic hepatitis. B. Semin. Liver Dis. 1984;4:47–58. doi: 10.1055/s-2008-1040645. [DOI] [PubMed] [Google Scholar]
  236. Montefiori D.C., Collman R.G., Fouts T.R., Zhou J.Y., Bilska M., Hoxie J.A., Moore J.P., Bolognesi D.P. Evidence that antibody-mediated neutralization of human immunodeficiency virus type 1 by sera from infected individuals is independent of coreceptor usage. J. Virol. 1998;72:1886–1893. doi: 10.1128/jvi.72.3.1886-1893.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  237. Moog C., Fleury H.J., Pellegrin I., Kirn A., Aubertin A.M. Autologous and heterologous neutralizing antibody responses following initial seroconversion in human immunodeficiency virus type 1-infected individuals. J. Virol. 1997;71:3734–3741. doi: 10.1128/jvi.71.5.3734-3741.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Moore J.P., Cao Y., Ho D.D., Koup R.A. Development of the anti-gp120 antibody response during seroconversion to human immunodeficiency virus type 1. J. Virol. 1994;68:5142–5155. doi: 10.1128/jvi.68.8.5142-5155.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Morens D.M. Antibody-dependent enhancement of infection and the pathogenesis of viral disease. Clin. Infect. Dis. 1994;19:500–512. doi: 10.1093/clinids/19.3.500. [DOI] [PubMed] [Google Scholar]
  240. Moskophidis D., Lohler J., Lehmann-Grube F. Antiviral antibody-producing cells in parenchymatous organs during persistent virus infection. J. Exp. Med. 1987;165:705–719. doi: 10.1084/jem.165.3.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Mozdzanowska K., Furchner M., Washko G., Mozdzanowski J., Gerhard W. A pulmonary influenza virus infection in SCID mice can be cured by treatment with hemagglutinin-specific antibodies that display very low virus-neutralizing activity in vitro. J. Virol. 1997;71:4347–4355. doi: 10.1128/jvi.71.6.4347-4355.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  242. Mueller D.L., Jenkins M.K., Schwartz R.H. Clonal expansion versus functional clonal inactivation: a constimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu. Rev. Immunol. 1989;7:445–480. doi: 10.1146/annurev.iy.07.040189.002305. [DOI] [PubMed] [Google Scholar]
  243. Murphy F.A. Rabies pathogenesis. Arch. Virol. 1977;54:279–297. doi: 10.1007/BF01314774. [DOI] [PubMed] [Google Scholar]
  244. Nathanson N., Martin J.R. The epidemiology of poliomyelitis: enigmas surrounding its appearance, epidemicity, and disappearance. Am. J. Epidemiol. 1979;110:672–692. doi: 10.1093/oxfordjournals.aje.a112848. [DOI] [PubMed] [Google Scholar]
  245. Nathanson N., McFadden S.F. In: Viral Virulence in Pathogenesis. Nathanson N., editor. Lippincott-Raven; New York: 1997. pp. 89–126. [Google Scholar]
  246. Nemazee D. Receptor editing in B cells. Adv. Immunol. 2000;74:89–126. doi: 10.1016/s0065-2776(08)60909-8. [DOI] [PubMed] [Google Scholar]
  247. Nemazee D., Buerki K. Vol. 86. 1989. Clonal deletion of autoreactive Blymphocytes in bone marrow chimeras; pp. 8039–8043. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Nemazee D., Buerki K. Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class antibody genes. Nature. 1989;337:562–566. doi: 10.1038/337562a0. [DOI] [PubMed] [Google Scholar]
  249. Nemazee D., Russell D., Arnold B., Haemmerling G., Allison J., Miller J.F., Morahan G., Buerki K. Clonal deletion of autospecific B lymphocytes. Immunol. Rev. 1991;122:117–132. doi: 10.1111/j.1600-065x.1991.tb00600.x. [DOI] [PubMed] [Google Scholar]
  250. Nossal G.J. Cellular mechanisms of immunologic tolerance. Annu. Rev. Immunol. 1983;1:33–62. doi: 10.1146/annurev.iy.01.040183.000341. [DOI] [PubMed] [Google Scholar]
  251. Nossal G.J.V. Vaccines. In: Paul W.E., editor. Lippincott-Raven; New York: 1998. pp. 1387–1425. (Fundamental Immunology). [Google Scholar]
  252. Nossal G.J.V., Austin C.M., Ada G.L. Antigens in immunity: VII. Analysis of immunological memory. Immunology. 1965;9:333. [PMC free article] [PubMed] [Google Scholar]
  253. Ochsenbein A.F., Zinkernagel R.M. Natural antibodies and complement link innate and acquired immunity. Immunol. Today. 2000;24:624–630. doi: 10.1016/s0167-5699(00)01754-0. [DOI] [PubMed] [Google Scholar]
  254. Ochsenbein A.F., Fehr T., Lutz C., Suter M., Brombacher F., Hengartner H., Zinkernagel R.M. Control of early viral and bacterial distribution and disease by natural antibodies. Science. 1999;286:2156–2159. doi: 10.1126/science.286.5447.2156. [DOI] [PubMed] [Google Scholar]
  255. Ochsenbein A.F., Pinschewer D.D., Odermatt B., Carroll M.C., Hengartner H., Zinkernagel R.M. Protective T cell-independent antiviral antibody responses are dependent on complement. J. Exp. Med. 1999;190:1165–1174. doi: 10.1084/jem.190.8.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  256. Ochsenbein A.F., Pinschewer D.D., Odermatt B., Ciurea A., Hengartner H., Zinkernagel R.M. Correlation of T cell independence of antibody responses with antigen dose reaching secondary lymhoid organs: implications for splenectomized patients and vaccine design. J. Immunol. 2000;164:6296–6302. doi: 10.4049/jimmunol.164.12.6296. [DOI] [PubMed] [Google Scholar]
  257. Ochsenbein A.F., Pinschewer D.D., Sierro S., Horvath E., Hengartner H., Zinkernagel R.M. Vol. 97. 2000. Protective long-term antibody memory by antigen-driven and T help-dependent differentiation of long-lived memory B cells to short-lived plasma cells independent of secondary lymphoid organs; pp. 13263–13268. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  258. Odermatt B.F., Eppler M., Leist T.P., Hengartner H., Zinkernagel R.M. Vol. 88. 1991. Virus-triggered acquired immunodeficiency by cytotoxic T-cell-dependent destruction of antigen-presenting cells and lymph follicle structure; pp. 8252–8256. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  259. Oehen S., Hengartner H., Zinkernagel R.M. Vaccination for disease. Science. 1991;251:195–198. doi: 10.1126/science.1824801. [DOI] [PubMed] [Google Scholar]
  260. Ofosu-Amaah S. The control of measles in tropical Africa: a review of past and present efforts. Rev. Infect. Dis. 1983;5:546–553. doi: 10.1093/clinids/5.3.546. [DOI] [PubMed] [Google Scholar]
  261. Ogura Y., Kurosaki M., Asahina Y., Enomoto N., Marumo F., Sato C. Prevalence and significance of naturally occurring mutations in the surface and polymerase genes of hepatitis B virus. J. Infect. Dis. 1999;180:1444–1451. doi: 10.1086/315094. [DOI] [PubMed] [Google Scholar]
  262. Oldstone M.B.A., Dixon F.J. Lymphocytic choriomeningitis: production of antibody by “tolerant” infected mice. Science. 1967;158:1193–1195. doi: 10.1126/science.158.3805.1193. [DOI] [PubMed] [Google Scholar]
  263. Oldstone M.B., Buchmeier M.J., Doyle M.V., Tishon A. Virus-induced immune complex disease: specific anti-viral antibody and C1q binding material in the circulation during persistent lymphocytic choriomeningitis virus infection. J. Immunol. 1980;124:831–838. [PubMed] [Google Scholar]
  264. Oxenius A., Bachmann M.F., Zinkernagel R.M., Hengartner H. Virus-specific MHC class II-restricted TCR-transgenic mice: effects on humoral and cellular immune responses after viral infection. Eur. J. Immunol. 1998;28:390–400. doi: 10.1002/(SICI)1521-4141(199801)28:01<390::AID-IMMU390>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  265. Oxenius A., Campbell K.A., Maliszewski C.R., Kishimoto T., Kikutani H., Hengartner H., Zinkernagel R.M., Bachmann M.F. CD40-CD40 ligand interactions are critical in T-B cooperation but not for other anti-viral CD4 T cell functions. J. Exp. Med. 1996;183:2209–2218. doi: 10.1084/jem.183.5.2209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  266. Oxenius A., Zinkernagel R.M., Hengartner H. CD4 T-cell induction and effector functions: a comparison of immunity against soluble antigens and viral infections. Adv. Immunol. 1998;70:313–367. doi: 10.1016/s0065-2776(08)60390-9. [DOI] [PubMed] [Google Scholar]
  267. Oxenius A., Zinkernagel R.M., Hengartner H. Comparison of activation versus induction of unresponsiveness of virus-specific CD4 and CD8 T cells upon acute versus persistent viral infection. Immunity. 1998;9:449–457. doi: 10.1016/s1074-7613(00)80628-7. [DOI] [PubMed] [Google Scholar]
  268. Papavasiliou F., Casellas R., Suh H., Qin X.F., Besmer E., Pelanda R., Nemazee D., Rajewsky K., Nussenzweig M.C. V(D)J recombination in mature B cells: a mechanism for altering antibody responses. Science. 1997;278:298–301. doi: 10.1126/science.278.5336.298. [DOI] [PubMed] [Google Scholar]
  269. Parren P.W.H.I., Moore J.P., Burton D.R., Sattentau Q.J. The neutralizing antibody response to HIV-1: viral evasion and escape from humoral immunity. AIDS. 1999;13:S137–S162. [PubMed] [Google Scholar]
  270. Paul W.E. Raven Press; New York: 1993. (Fundamental Immunology). [Google Scholar]
  271. Pelanda R., Schwers S., Sonoda E., Torres R.M., Nemazee D., Rajewsky K. Receptor editing in a transgenic mouse model: site, efficiency, and role in B cell tolerance and antibody diversification. Immunity. 1997;7:765–775. doi: 10.1016/s1074-7613(00)80395-7. [DOI] [PubMed] [Google Scholar]
  272. Pilgrim A.K., Pantaleo G., Cohen O.J., Fink L.M., Zhou J.Y., Zhou J.T., Bolognesi D.P., Fauci A.S., Montefiori D.C. Neutralizing antibody responses to human immunodeficiency virus type 1 in primary infection and long-term-nonprogressive infection. J. Infect. Dis. 1997;176:924–932. doi: 10.1086/516508. [DOI] [PubMed] [Google Scholar]
  273. Plagemann P.G., Rowland R.R., Even C., Faaberg K.S. Lactate dehydrogenase-elevating virus: an ideal persistent virus? Springer Semin. Immunopathol. 1995;17:167–186. doi: 10.1007/BF00196164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  274. Planz O., Seiler P., Hengartner H., Zinkernagel R.M. Specific cytotoxic T cells eliminate cells producing neutralizing antibodies. Nature. 1996;382:726–729. doi: 10.1038/382726a0. [DOI] [PubMed] [Google Scholar]
  275. Planz O., Ehl S., Furrer E., Horvath E., Brundler M.A., Hengartner H., Zinkernagel R.M. Vol. 94. 1997. A critical role for neutralizing-antibody-producing B cells, CD4 T cells, and interferons in persistent and acute infections of mice with lymphocytic choriomeningitis virus: implications for adoptive immunotherapy of virus carriers; pp. 6874–6879. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  276. Poignard P., Klasse P.J., Sattentau Q.J. Antibody neutralization of HIV-1. Immunol. Today. 1996;17:239–246. doi: 10.1016/0167-5699(96)10007-4. [DOI] [PubMed] [Google Scholar]
  277. Poignard P., Sabbe R., Picchio G.R., Wang M., Gulizia R.J., Katinger H., Parren P.W., Mosier D.E., Burton D.R. Neutralizing antibodies have limited effects on the control of established HIV-1 infection in vivo. Immunity. 1999;10:431–438. doi: 10.1016/s1074-7613(00)80043-6. [DOI] [PubMed] [Google Scholar]
  278. Porterfield J.S. Antibody-dependent enhancement of viral infectivity. Adv. Virus Res. 1986;31:335–355. doi: 10.1016/s0065-3527(08)60268-7. [DOI] [PubMed] [Google Scholar]
  279. Protzer-Knolle U., Naumann U., Bartenschlager R., Berg T., Hopf U., Meyer zum Buschenfelde K.-H., Neuhaus P., Gerken G. Hepatitis B virus with antigenically altered hepatitis B surface antigen is selected by high-dose hepatitis B immune globulin after liver transplantation. Hepatology. 1998;27:254–263. doi: 10.1002/hep.510270138. [DOI] [PubMed] [Google Scholar]
  280. Racz P., Tenner-Racz K., Kahl C., Feller A.C., Kern P., Dietrich M. Spectrum of morphologic changes of lymph nodes from patients with AIDS or AIDS-related complexes. Prog. Allergy. 1986;37:81–181. doi: 10.1159/000318442. [DOI] [PubMed] [Google Scholar]
  281. Radic M.Z., Erikson J., Litwin S., Weigert M. B lymphocytes may escape tolerance by revising their antigen receptors. J. Exp. Med. 1993;177:1165–1173. doi: 10.1084/jem.177.4.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  282. Ravetch J.V. Fc receptors: rubor redux. Cell. 1994;78:553–560. doi: 10.1016/0092-8674(94)90521-5. [DOI] [PubMed] [Google Scholar]
  283. Ravetch J.V., Clynes R.A. Divergent roles for Fc receptors and complement in vivo. Annu. Rev. Immunol. 1998;16:421–432. doi: 10.1146/annurev.immunol.16.1.421. [DOI] [PubMed] [Google Scholar]
  284. Rehermann B., Ferrari C., Pasquinelli C., Chisari F.V. The hepatitis B virus persists for decades after patients' recovery from acute viral hepatitis despite active maintenance of a cytotoxic T-lymphocyte response. Nat. Med. 1996;2:1–6. doi: 10.1038/nm1096-1104. [DOI] [PubMed] [Google Scholar]
  285. Reiter Y., Fishelson Z. Targeting of complement to tumor cells by heteroconjugates composed of antibodies and of the complement component C3b. J. Immunol. 1989;142:2771–2777. [PubMed] [Google Scholar]
  286. Reitter J.N., Means R.E., Desrosiers R.C. A role for carbohydrates in immune evasion in AIDS. Nat. Med. 1998;4:679–684. doi: 10.1038/nm0698-679. [DOI] [PubMed] [Google Scholar]
  287. Reth M. Antigen receptor tail clue. Nature. 1989;338:383–384. doi: 10.1038/338383b0. [DOI] [PubMed] [Google Scholar]
  288. Reth M., Wienands J., Schamel W.W. An unsolved problem of the clonal selection theory and the model of an oligomeric B-cell antigen receptor. Immunol. Rev. 2000;176:10–18. doi: 10.1034/j.1600-065x.2000.00610.x. [DOI] [PubMed] [Google Scholar]
  289. Rice C.M. Hepatitis C virus. In: Fields B.N., Knippe D.M., Howley P.M., editors. Lippincott-Raven; New York: 1996. pp. 931–960. (Fields Virology). [Google Scholar]
  290. Robinson W.E., Jr., Mitchell W.M. Neutralization and enhancement of in vitro and in vivo HIV and simian immunodeficiency virus infections. AIDS. 1990;4(suppl. 1):S151–S162. [PubMed] [Google Scholar]
  291. Robinson W.E., Jr., Montefiori D.C., Mitchell W.M. Antibody-dependent enhancement of human immunodeficiency virus type 1 infection. Lancet. 1988;1:790–794. doi: 10.1016/s0140-6736(88)91657-1. [DOI] [PubMed] [Google Scholar]
  292. Roost H.-P., Charan S., Zinkernagel R.M. Analysis of the kinetics of antiviral memory T help in vivo: characterization of short-lived cross-reactive T help. Eur. J. Immunol. 1990;20:2547–2554. doi: 10.1002/eji.1830201204. [DOI] [PubMed] [Google Scholar]
  293. Roost H.-P., Bachmann M.F., Haag A., Kalinke U., Pliska V., Hengartner H., Zinkernagel R.M. Vol. 92. 1995. Early high-affinity neutralizing anti-viral IgG responses without further overall improvements of affinity; pp. 1257–1261. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  294. Roost H.-P., Haag A., Burkhart C., Zinkernagel R.M., Hengartner H. Mapping of the dominant neutralizing antigenic site of a virus using infected cells. J. Immunol. Methods. 1996;189:233–242. doi: 10.1016/0022-1759(95)00252-9. [DOI] [PubMed] [Google Scholar]
  295. Rose N.R., Mackay I.R. In: Rose N.R., Mackay I.R., editors. Vol. II. Academic Press; London: 1992. pp. 1–144. (The Autoimmune Diseases). [Google Scholar]
  296. Rowe W.P. Studies on pathogenesis and immunity in lymphocytic choriomeningitis infection of the mouse. Navy Res. Rep. 1954;12:167–220. [Google Scholar]
  297. Ruprecht R.M. Live attenuated AIDS viruses as vaccines: promise or peril? Immunol. Rev. 1999;170:135–149. doi: 10.1111/j.1600-065x.1999.tb01335.x. [DOI] [PubMed] [Google Scholar]
  298. Sabin A.B. Paralytic poliomyelitis: old dogmas and new perspectives. Rev. Infect. Dis. 1981;3:543–564. doi: 10.1093/clinids/3.3.543. [DOI] [PubMed] [Google Scholar]
  299. Sabin A.B. Oral poliovirus vaccine: history of its development and use and current challenge to eliminate poliomyelitis from the world. J. Infect. Dis. 1985;151:420–436. doi: 10.1093/infdis/151.3.420. [DOI] [PubMed] [Google Scholar]
  300. Sabin A.B., Flores A.A., Fernandez d.C., Sever J.L., Madden D.L., Shekarchi I., Albrecht P. Successful immunization of children with and without maternal antibody by aerosolized measles vaccine. I. Different results with undiluted human diploid cell and chick embryo fibroblast vaccines. JAMA. 1983;249:2651–2662. [PubMed] [Google Scholar]
  301. Saifuddin M., Hedayati T., Atkinson J.P., Holguin M.H., Parker C.J., Spear G.T. Human immunodeficiency virus type 1 incorporates both glycosyl phosphatidylinositol-anchored CD55 and CD59 and integral membrane CD46 at levels that protect from complement-mediated destruction. J. Gen. Virol. 1997;78:1907–1911. doi: 10.1099/0022-1317-78-8-1907. [DOI] [PubMed] [Google Scholar]
  302. Sarvas H., Kurikka S., Seppala I.J., Makela P.H., Makela O. Maternal antibodies partly inhibit an active antibody response to routine tetanus toxoid immunization in infants. J. Infect. Dis. 1992;165:977–979. doi: 10.1093/infdis/165.5.977. [DOI] [PubMed] [Google Scholar]
  303. Schrag S.J., Rota P.A., Bellini W.J. Spontaneous mutation rate of measles virus: direct estimation based on mutations conferring monoclonal antibody resistance. J. Virol. 1999;73:51–54. doi: 10.1128/jvi.73.1.51-54.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  304. Schulte S., Unger C., Mo J.A., Wendler O., Bauer E., Frischholz S., von der M.K., Kalden J.R., Holmdahl R., Burkhardt H. Arthritis-related B cell epitopes in collagen II are conformation-dependent and sterically privileged in accessible sites of cartilage collagen fibrils. J. Biol. Chem. 1998;273:1551–1561. doi: 10.1074/jbc.273.3.1551. [DOI] [PubMed] [Google Scholar]
  305. Schwartz R.H. Acquisition of immunologic self-tolerance. Cell. 1989;57:1073–1081. doi: 10.1016/0092-8674(89)90044-5. [DOI] [PubMed] [Google Scholar]
  306. Seiler P., Aichele P., Odermatt B., Hengartner H., Zinkernagel R.M., Schwendener R.A. Crucial role of marginal zone macrophages and marginal zone metallophils in the clearance of lymphocytic choriomeningitis virus infection. Eur. J. Immunol. 1997;27:2626–2633. doi: 10.1002/eji.1830271023. [DOI] [PubMed] [Google Scholar]
  307. Seiler P., Senn B.M., Brundler M.A., Zinkernagel R.M., Hengartner H., Kalinke U. In vivo selection of neutralization-resistant virus variants but no evidence of Bcell tolerance in lymphocytic choriomeningitis virus carrier mice expressing a transgenic virus-neutralizing antibody. J. Immunol. 1999;162:4536–4541. [PubMed] [Google Scholar]
  308. Sevilla N., Kunz S., Holz A., Lewicki H., Homann D., Yamada H., Campbell K.P., de la Torre J.C., Oldstone M.B. Immunosuppression and resultant viral persistence by specific viral targeting of dendritic cells. J. Exp. Med. 2000;192:1249–1260. doi: 10.1084/jem.192.9.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  309. Shibata R., Igarashi T., Haigwood N., Buckler-White A., Ogert R., Ross W., Willey R., Cho M.W., Martin M.A. Neutralizing antibody directed against the HIV-1 envelope glycoprotein can completely block HIV-1/SIV chimeric virus infections of macaque monkeys. Nat. Med. 1999;5:204–210. doi: 10.1038/5568. [DOI] [PubMed] [Google Scholar]
  310. Shimizu Y.K., Hijikata M., Iwamoto A., Alter H.J., Purcell R.H., Yoshikura H. Neutralizing antibodies against hepatitis C virus and the emergence of neutralization escape mutant viruses. J. Virol. 1994;68:1494–1500. doi: 10.1128/jvi.68.3.1494-1500.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  311. Siegrist C.A., Barrios C., Martinez X., Brandt C., Berney M., Cordova M., Kovarik J., Lambert P.H. Influence of maternal antibodies on vaccine responses: inhibition of antibody but not T cell responses allows successful early prime-boost strategies in mice. Eur. J. Immunol. 1998;28:4138–4148. doi: 10.1002/(SICI)1521-4141(199812)28:12<4138::AID-IMMU4138>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  312. Silberman S.L., Jacobs R.P., Cole G.A. Mechanisms of hemopoietic and immunological dysfunction induced by lymphocytic choriomeningitis virus. Infect. Immun. 1978;19:533–539. doi: 10.1128/iai.19.2.533-539.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  313. Sissons J.G., Oldstone M.B., Schreiber R.D. Vol. 77. 1980. Antibody-independent activation of the alternative complement pathway by measles virus-infected cells; pp. 559–562. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  314. Skehel J.J., Stevens D.J., Daniels R.S., Knossow M., Wilson L.A., Wiley D.C. Vol. 81. 1984. A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by monoclonal antibody; pp. 1779–1783. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  315. Slifka M.K., Ahmed R. Long-lived plasma cells: a mechanism for maintaining persistent antibody production. Curr. Opin. Immunol. 1998;10:252–258. doi: 10.1016/s0952-7915(98)80162-3. [DOI] [PubMed] [Google Scholar]
  316. Smith T.J., Chase E.S., Schmidt T.J., Olson N.H., Baker T.S. Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon. Nature. 1996;383:350–354. doi: 10.1038/383350a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  317. Staudt L.M., Gerhard W. Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. J. Exp. Med. 1983;157:687–704. doi: 10.1084/jem.157.2.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  318. Steinhoff U., Müller U., Schertler A., Hengartner H., Aguet M., Zinkernagel R.M. Antiviral protection by vesicular stomatitis virus-specific antibodies in alpha/beta interferon receptor-deficient mice. J. Virol. 1995;69:2153–2158. doi: 10.1128/jvi.69.4.2153-2158.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  319. Stewart P.L., Nemerow G.R. Recent structural solutions for antibody neutralization of viruses. Trends Microbiol. 1997;5:229–233. doi: 10.1016/S0966-842X(97)01049-4. [DOI] [PubMed] [Google Scholar]
  320. Strohle A., Eggenberger K., Steiner C.A., Matter L., Germann D. Mumps epidemic in vaccinated children in West Switzerland. Schweiz. Med. Wochenschr. 1997;127:1124–1133. [PubMed] [Google Scholar]
  321. Swain S.L., Bradley L.M. Helper T cell memory: more questions than answers. Semin. Immunol. 1992;4:59–68. [PubMed] [Google Scholar]
  322. Szymanski I.O., Pullman J.M., Underwood J.M. Electron microscopic and immunochemical studies in a patient with hepatitis C virus infection and mixed cryoglobulinemia type II. Am. J. Clin. Pathol. 1994;102:278–283. doi: 10.1093/ajcp/102.3.278. [DOI] [PubMed] [Google Scholar]
  323. Takeda A., Tuazon C.U., Ennis F.A. Antibody-enhanced infection by HIV-1 via Fc receptor-mediated entry. Science. 1988;242:580–583. doi: 10.1126/science.2972065. [DOI] [PubMed] [Google Scholar]
  324. Teale J.M., Mackay I.R. Is it still relevant? Vol. 2. 1979. Autoimmune disease and the theory of clonal abortion; pp. 284–287. (Lancet). [DOI] [PubMed] [Google Scholar]
  325. Tew J.G., Kosco M.H., Burton G.F., Szakal A.K. Follicular dendritic cells as accessory cells. Immunol. Rev. 1990;117:185–211. doi: 10.1111/j.1600-065x.1990.tb00573.x. [DOI] [PubMed] [Google Scholar]
  326. Thein S., Aung M.M., Shwe T.N., Aye M., Zaw A., Aye K., Aye K.M., Aaskov J. Risk factors in dengue shock syndrome. Am. J. Trop. Med. Hyg. 1997;56:566–572. doi: 10.4269/ajtmh.1997.56.566. [DOI] [PubMed] [Google Scholar]
  327. Thomsen A.R., Johansen J., Marker O., Christensen J.P. Exhaustion of CTL memory and recrudescence of viremia in lymphocytic choriomeningitis virus-infected MHC class II-deficient mice and B cell-deficient mice. J. Immunol. 1996;157:3074–3080. [PubMed] [Google Scholar]
  328. Tiegs S.L., Russell D.M., Nemazee D. Receptor editing in self-reactive bone marrow B cells. J. Exp. Med. 1993;177:1009–1020. doi: 10.1084/jem.177.4.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  329. Tindle R.W., Frazer I.H. Immune response to human papillomaviruses and the prospects for human papillomavirus-specific immunisation. Curr. Top. Microbiol. Immunol. 1994;186:217–253. doi: 10.1007/978-3-642-78487-3_12. [DOI] [PubMed] [Google Scholar]
  330. Tishon A., Borrow P., Evans C., Oldstone M.B. Virus-induced immunosuppression. 1. Age at infection relates to a selective or generalized defect. Virology. 1993;195:397–405. doi: 10.1006/viro.1993.1389. [DOI] [PubMed] [Google Scholar]
  331. Tlaskalova-Hogenova H., Mandel L., Stepankova R., Bartova J., Barot R., Leclerc M., Kovaru F., Trebichavsky I. Autoimmunity: from physiology to pathology. Natural antibodies, mucosal immunity and development of B cell repertoire. Folia Biol. 1992;38:202–215. [PubMed] [Google Scholar]
  332. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302:575–581. doi: 10.1038/302575a0. [DOI] [PubMed] [Google Scholar]
  333. Tremblay M., Wainberg M.A. Neutralization of multiple HIV-1 isolates from a single subject by autologous sequential sera. J. Infect. Dis. 1990;162:735–737. doi: 10.1093/infdis/162.3.735. [DOI] [PubMed] [Google Scholar]
  334. Trkola A., Dragic T., Arthos J., Binley J.M., Olson W.C., Allaway G.P., Cheng-Mayer C., Robinson J., Maddon P.J., Moore J.P. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature. 1996;384:184–187. doi: 10.1038/384184a0. [DOI] [PubMed] [Google Scholar]
  335. Trkola A., Ketas T., Kewalramani V.N., Endorf F., Binley J.M., Katinger H., Robinson J., Littman D.R., Moore J.P. Neutralization sensitivity of human immunodeficiency virus type 1 primary isolates to antibodies and CD4-based reagents is independent of coreceptor usage. J. Virol. 1998;72:1876–1885. doi: 10.1128/jvi.72.3.1876-1885.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  336. van Noesel C.J., Lankester A.C., van Lier R.A. Dual antigen recognition by B cells. Immunol. Today. 1993;14:8–11. doi: 10.1016/0167-5699(93)90316-d. [DOI] [PubMed] [Google Scholar]
  337. Vaughn M., Virella G., Lopes-Virella M.F. Diabetes, autoimmunity, and arteriosclerosis. Clin. Immunol. Immunopathol. 1989;52:414–420. doi: 10.1016/0090-1229(89)90156-6. [DOI] [PubMed] [Google Scholar]
  338. Von Behring E., Kitasao S. Uber das Zustandekommen der Diphterie-Immunitat und der Tetanus-Immunitat bei Thieren. Dtsch. Med. Wochenschrift. 1890;16:1113–1114. [Google Scholar]
  339. Wagner R.R. Plenum Press; New York: 1987. pp. 1–544. (The Rhabdoviruses). [Google Scholar]
  340. Wallis C., Melnick J.L. Virus aggregation as the cause of the non-neutralizable persistent fraction. J. Virol. 1967;1:478–488. doi: 10.1128/jvi.1.3.478-488.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  341. Wang M.-L., Skehel J.J., Wiley D.C. Comparative analyses of the specificities of anti-influenza hemagglutinin antibodies in human sera. J. Virol. 1986;57:124–128. doi: 10.1128/jvi.57.1.124-128.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  342. Webster R.G., Rott R. Influenza virus A pathogenicity: the pivotal role of hemagglutinin. Cell. 1987;50:665–666. doi: 10.1016/0092-8674(87)90321-7. [DOI] [PubMed] [Google Scholar]
  343. Webster R.G., Laver W.G., Air G.M., Schild G.C. Molecular mechanisms of variation in influenza viruses. Nature. 1982;296:115–121. doi: 10.1038/296115a0. [DOI] [PubMed] [Google Scholar]
  344. Weigle W.O. Immunological unresponsiveness. Adv. Immunol. 1973;16:61–122. doi: 10.1016/s0065-2776(08)60296-5. [DOI] [PubMed] [Google Scholar]
  345. Weiner A.J., Geysen H.M., Christopherson C., Hall J.E., Mason T.J., Saracco G., Bonino F., Crawford K., Marion C.D., Crawford K.A., Brunetto M., Barr P.J., Miyamura T., McHutchinson J., Houghton M. Vol. 89. 1992. Evidence for immune selection of hepatitis C virus (HCV) putative envelope glycoprotein variants: potential role in chronic HCV infections; pp. 3468–3472. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  346. Weiss R.C., Scott F.W. Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever. Comp. Immunol. Microbiol. Infect. Dis. 1981;4:175–189. doi: 10.1016/0147-9571(81)90003-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  347. Welsh R.M., Jr., Cooper N.R., Jensen F.C., Oldstone M.B. Human serum lyses RNA tumour viruses. Nature. 1975;257:612–614. doi: 10.1038/257612a0. [DOI] [PubMed] [Google Scholar]
  348. WHO Study Group Factors affecting the immunogenicity of oral poliovirus vaccine: a prospective evaluation in Brazil and the Gambia. World Health Organization Collaborative Study Group on Oral Poliovirus Vaccine. J. Infect. Dis. 1995;171:1097–1106. doi: 10.1093/infdis/171.5.1097. [DOI] [PubMed] [Google Scholar]
  349. Wild T.F. Measles vaccines, new developments and immunization strategies. Vaccine. 1999;17:1726–1729. doi: 10.1016/s0264-410x(98)00428-9. [DOI] [PubMed] [Google Scholar]
  350. Wiley D.C., Wilson I.A., Skehel J.J. Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature. 1981;289:373–378. doi: 10.1038/289373a0. [DOI] [PubMed] [Google Scholar]
  351. Wilfert C.M., Buckley R.H., Mohanakumar T., Griffith J.F., Katz S.L., Whisnant J.K., Eggleston P.A., Moore M., Treadwell E., Oxman M.N., Rosen F.S. Persistent and fatal central-nervous-system ECHOvirus infections in patients with agammaglobulinemia. N. Engl. J. Med. 1977;296:1485–1489. doi: 10.1056/NEJM197706302962601. [DOI] [PubMed] [Google Scholar]
  352. Wilson I.A., Cox N.J. Structural basis of immune recognition of influenza virus hemagglutinin. Annu. Rev. Immunol. 2000;8:737–771. doi: 10.1146/annurev.iy.08.040190.003513. [DOI] [PubMed] [Google Scholar]
  353. Wilson J.A., Hevey M., Bakken R., Guest S., Bray M., Schmaljohn A.L., Hart M.K. Epitopes involved in antibody-mediated protection from Ebola virus. Science. 2000;287:1664–1666. doi: 10.1126/science.287.5458.1664. [DOI] [PubMed] [Google Scholar]
  354. Wilson P.C., Wilson K., Liu Y.J., Banchereau J., Pascual V., Capra J.D. Receptor revision of immunoglobulin heavy chain variable region genes in normal human B lymphocytes. J. Exp. Med. 2000;191:1881–1894. doi: 10.1084/jem.191.11.1881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  355. Wright K.E., Salvato M.S., Buchmeier M.J. Neutralizing epitopes of lymphocytic choriomeningitis virus are conformational and require both glycosylation and disulfide bonds for expression. Virology. 1989;171:417–426. doi: 10.1016/0042-6822(89)90610-7. [DOI] [PubMed] [Google Scholar]
  356. Xiao Y., Zhao Y., Lu Y., Chen Y.H. Epitope-vaccine induces high levels of ELDKWA-epitope-specific neutralizing antibody. Immunol. Invest. 2000;29:41–50. doi: 10.3109/08820130009105143. [DOI] [PubMed] [Google Scholar]
  357. Yewdell J.W., Webster R.G., Gerhard W.U. Antigenic variation in three distinct determinants of an influenza type HA molecule. Nature. 1979;279:246–248. doi: 10.1038/279246a0. [DOI] [PubMed] [Google Scholar]
  358. Zinkernagel R.M. On immunological memory. Phil. Trans. R. Soc. London. 2000;355:369–371. doi: 10.1098/rstb.2000.0576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  359. Zinkernagel R.M. What is missing in immunology to understand immunity? Nature Immunol. 2000;1:181–185. doi: 10.1038/79712. [DOI] [PubMed] [Google Scholar]
  360. Zinkernagel R.M., Cooper S., Chambers J., Lazzarini R.A., Hengartner H., Arnheiter H. Virus-induced autoantibody response to a transgenic viral antigen. Nature. 1990;344:68–71. doi: 10.1038/345068a0. [DOI] [PubMed] [Google Scholar]
  361. Zinkernagel R.M., Pircher H.P., Ohashi P., Oehen S., Odermatt B., Mak T., Arnheiter H., Bürki K., Hengartner H. T and B cell tolerance and responses to viral antigens in transgenic mice: implications for the pathogenesis of autoimmune versus immunopathological disease. Immunol. Rev. 1991;122:133–171. doi: 10.1111/j.1600-065x.1991.tb00601.x. [DOI] [PubMed] [Google Scholar]
  362. Zinkernagel R.M., Bachmann M.F., Kündig T.M., Oehen S., Pircher H., Hengartner H. On immunological memory. Annu. Rev. Immunol. 1996;14:333–367. doi: 10.1146/annurev.immunol.14.1.333. [DOI] [PubMed] [Google Scholar]
  363. Zinkernagel R.M., Planz O., Ehl S., Battegay M., Odermatt B., Klenerman P., Hengartner H. General and specific immunosuppression caused by antiviral T-cell responses. Immunol. Rev. 1999;168:305–315. doi: 10.1111/j.1600-065x.1999.tb01300.x. [DOI] [PubMed] [Google Scholar]
  364. Zweerink H.J., Courtneidge S.A., Skehel J.J., Crumpton M.J., Askonas B.A. Cytotoxic T cells kill influenza virus infected cells but do not distinguish between serologically distinct type A viruses. Nature. 1977;267:354–356. doi: 10.1038/267354a0. [DOI] [PubMed] [Google Scholar]

Articles from Advances in Immunology are provided here courtesy of Elsevier

RESOURCES